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Abstract 
 
For the purpose of environmental management, distributed physically based hydrological models are utilised. The inability to 
reliably measure the distributed physical characteristics of a catchment results in significant uncertainty in the parameterisation of 
physically based, distributed models.  Calibration of such models is usually achieved with limited discharge data. Due to the 
parameteric complexity of such models, robust calibration of parameters is not achieved as these models are over-parameterised; 
many combinations of parameter values from many areas of the parameter space may produce simulations that fit the observed flow 
data reasonably well. The parameteric uncertainty produces significant predictive uncertainty, in terms of the range of discharge 
predictions, but also in terms of internal states of acceptable model simulations; the interaction of processes through ill-defined 
parameter estimates permits the reproduction of the discharge hydrograph via a range of modelled process mechanisms. In this 
study, uncertain estimates of the internal behaviour of catchment response are used as an additional criterion in the assessment of 
the acceptability of model simulations.  In two applications, it is shown that such uncertain estimates may greatly reduce the 
parametric uncertainty associated with acceptable parameterisations, and hence the predictive uncertainty of such models. This is 
achieved through the improved definition of internal processes afforded by the uncertain estimates.  Additionally, as it is shown that 
multi-objective criteria may be used to constrain parameter estimates by model inversion, investigation of multi-scale hydraulic 
conductivities is permitted. The scaling behaviour observed in one such investigation indicates that preferential flow pathways 
dominate the characteristic conductivity of the catchment response.   
 
 
1. INTRODUCTION 
 
In an attempt to represent the physics of the hydrological 
behaviour of catchments, many complex distributed models 
exist, each requiring various levels of complexity in their 
parameterisation.  Due to the inability to accurately measure 
distributed physical properties of environmental systems, 
calibration against observed data is typically performed. This 
is most often achieved with limited rainfall – runoff data.  As 
noted by Beven (1989), given the complexity of such 
models, many different combinations of parameter values 
may simulate the discharge hydrograph equally well. Many 
parameterisations may therefore be deemed acceptable given 
the limited calibration data. These parameter sets may be 
located throughout many areas of the parameter space (Duan 
et al., 1992; Beven, 1993). This uncertainty of the 
appropriate parameter values yields predictive uncertainty as 
has been demonstrated through applications of the 
Generalised Likelihood Uncertainty Estimation (GLUE) 
methodology (Beven and Binley, 1992; Freer et al., 1996).  
 

To constrain the acceptable parameter sets, additional 
discharge data sets may be used, hopefully incorporating 
more of the dynamics of the system. Alternatively, 
competing model parameterisations may be rejected on the 
basis of predictions of hydrological variables other than 
discharge.  Saturated area predictions, in particular, 
reflecting the integrated response of hillslope processes, may 
be a useful discriminatory variable. If a given model 
parameterisation predicts saturation excess overland flow as 
a mechanism in the field, but it is known that this did not 
occur in reality, then the parameterisation may be rejected as 
the physical processes in the field are not being accurately 
reproduced in the model [Beven, 1989]. Qualitative 
information of this nature may therefore be used to constrain 
model uncertainties. Likewise, and to a greater extent, 
quantitative information of saturated areas may be employed 
to discriminate between models, but quantitative data on 
saturated contributed areas, either surface or subsurface, is 
difficult to obtain by ground surveys [see for example, 
Dunne et al., 1975; Beven, 1978]. 
 



 

 

In this study, a physically based distributed model 
(TOPMODEL; Beven et al., 1995) is applied to two 
catchments. The first is the Naizin catchment in Northern 
France, the other is the Baru catchment, located in tropical 
Borneo.  Rainfall – runoff data are employed in each 
application to assess the acceptability of multiple 
parameterisations drawn from a priori acceptable ranges, 
through a goodness of fit criterion.  In the case of Naizin 
catchment, uncertain estimates of saturated areas are derived 
from ERS-1 SAR imagery (Gineste et al., 1997), and are then 
used as a second modelling objective thus providing a 
secondary discriminant of acceptable – unacceptable model 
parameterisations.  
 
A similar approach is adopted for the application of 
TOPMODEL to the Baru catchment, though without the aid 
of remotely sensed data.  Given an appreciation of the 
behaviour of the catchment from field experience, uncertain 
estimates of saturated areas for a given storm are utilised to 
constrain the acceptable parameterisations.  The effect of the 
additional conditioning on the acceptable parameter response 
surfaces is then investigated for both applications. 
 
2. TOPMODEL 
 
TOPMODEL [Beven and Kirkby, 1979; Beven et al., 1995] 
has been developed with the aim of providing a simple but 
physically reasonable, distributed description of the 
processes involved in rainfall-runoff production requiring a 
minimum of parameters. Its primary premise is that the 
distributed responses of a catchment can be described 
through the use of the ln(a/tanβ) topographic index of 
hydrological similarity calculated from the upslope area 
draining through a point per unit contour length, a, and the 
slope at that point, tanβ. The popularity of TOPMODEL in 
recent years has lead to a wide range of  applications (see for 
example, the review of  Beven et al., [1995]).  
 
TOPMODEL is not intended as a fixed modelling package, 
but rather a collection of concepts that can be used, modified 
or rejected as an application demands. One key development 
in the recent history of TOPMODEL is the generalisation of 
the storage - discharge relationship. Most TOPMODEL 
applications assumed an exponential relationship, whereas in 
a number of recent applications the model could be better fit 
to observed discharges though the use of parabolic, linear, or 
a compound function (Ambroise et al., 1996). 
 
In this study, after preliminary modelling of the rainfall-
runoff data, it was decided that a compound storage - 
discharge relationship should be adopted due to the 
particular baseflow recession of the Naizin catchment. 
Recessions were analysed using the Master Recession Curve 
analysis software (MRCtool) developed by Lamb [1996]. 
From this analysis, it was evident that the recession 
contained two components, both of which follow an 
exponential form of the storage - discharge relationship, but 
with distinctly different gradients - the recession of the flow 

at a discharge of 4 x 10-5 mh-1 abruptly and consistently 
changes. Following this analysis, a compound storage - 
discharge relationship was adopted consisting of two 
exponential functions above and below this threshold 
discharge. 
 
3. THE GLUE METHODOLOGY 
 
The Generalised Likelihood Uncertainty Estimation (GLUE) 
methodology [Beven and Binley, 1992] was developed as a 
method for calibration and uncertainty estimation of models 
based on generalised likelihood measures, and is an 
extension of the Generalised Sensitivity Analysis of Spear 
and Hornberger [1980]. The GLUE methodology attempts to 
explicitly recognise the fundamental limitations of 
representing the rainfall-runoff process with contemporary 
hydrological models. Its application so far has predominantly 
been in rainfall-runoff modelling [Beven and Binley, 1992; 
Beven, 1993; Freer et al. 1996], but has also been applied to 
assess the uncertainty associated with predictions of land 
surface to atmosphere fluxes [Franks and Beven, 1997], 
geochemical modelling [Zak et al., 1997] and flood 
inundation estimation [Romanowicz et al., 1996]. 

GLUE is based upon Monte-Carlo simulation; a large 
number of model runs are made, each with random parameter 
values selected from probability distributions for each 
parameter. The acceptability of each run is assessed by 
comparing predicted to observed discharges through some 
chosen likelihood measure. Runs that achieve a likelihood 
below a certain threshold may then be rejected as ‘non-
behavioural’. The likelihoods of these non-behavioural 
parameterisations are set to zero and are thereby removed 
from the subsequent analysis. 
 
Following the rejection of non-behavioural runs, the 
likelihood weights of the retained runs are rescaled so that 
their cumulative total is 1.0. At each time step, the predicted 
output from the retained runs are likelihood weighted and 
ranked to form a cumulative distribution of the output 
variable from which chosen quantiles can be selected to 
represent the model uncertainty. 
 
While GLUE is based on a Bayesian conditioning approach, 
the likelihood measure is achieved through a goodness of fit 
criterion as a substitute for a more traditional likelihood 
function. This is due to the difficulties associated with 
environmental models where it is not generally possible to 
assume that any available model structure is correct, nor that 
a consistent error model can be defined [Franks and Beven, 
1997]. Nevertheless, the GLUE methodology retains the 
spirit of traditional likelihood theory, but with a more lenient 
likelihood function.  
 
The likelihood value is associated with a particular set of 
parameter values within a given model structure.  The 
likelihood associated with a particular parameter value may 
therefore be expected to vary depending on the values of the 



 

 

other parameters and there may be no clear optimum 
parameter set.  Interaction between parameter values will be 
reflected implicitly in the likelihood values associated with 
the parameter sets. Multiple model structures may also 
compete to be considered acceptable within this framework.  
In most applications no direct account is taken of 
uncertainties in the input and boundary data driving the 
model; any such uncertainties are also implicitly reflected in 
the likelihood values as the likelihood values are conditioned 
on the inputs. 
 
For the application of the GLUE methodology, the likelihood 
function adopted here to weight simulations according to 
their reproduction of the observed discharge time series is 
given by; 
 

( ) )/1(| 22
obsii YL σσ−=Θ  (1) 

where L(Θi|Y) is the likelihood, σi
2 is the variance of the 

errors for parameter set Θi given the set of discharge 
observations Y, and σ2

obs is the variance of the observed data 
set. This likelihood measure is equal to a coefficient of 
determination or the Nash and Sutcliffe [1970] efficiency. 
 
3.1 Updating uncertainty estimates using Bayes equation 
 
In order to constrain uncertainty, additional data may be 
incorporated into the likelihood estimates using the GLUE 
methodology. The updating of the likelihood distribution 
may be achieved through the application of Bayes Equation 
in the form: 
 

( ) ( ) ( )L Y L Y L Ci i iΘ Θ Θ| | /= 1 0  (2) 
 
where Lo(Θi) is a prior likelihood measure for the parameter 
set Θi; L1(Y|Θi) is the likelihood measure calculated for the 
simulation of observed variable Y by the parameter set Θi; 
L(Θi|Y)  is the posterior likelihood for the parameter set ΘI  
given the new observations Y; and C is a scaling constant.  
Application of (2) in this form ignores any correlation of the 
simulations of the different parameter sets.  The parameter 
sets are chosen independently, but the simulated variables 
(and resulting likelihood measures) may be correlated due to 
forcing of the model dynamics by the input variables. 
 
In application to both catchments, model parameter sets are 
evaluated with respect to the comparison of predicted and 
observed discharges through application of equation (1).  
 
For the application to the Naizin catchment, Bayesian 
updating of likelihoods is then performed through application 
of equation (2) with respect to the predicted areal extent of 
saturation compared to the uncertain range of actual 
saturated area extent as inferred from the extrapolation of the 
limited saturation ground truth through the joint use of the 

topographic index and the SPI.  The updated, likelihood 
weighted simulations may then be used to derive the 
uncertainty bounds. In comparison to the uncertainty bounds 
derived through conditioning on discharges alone, an 
appreciation of the utility of the additional constraint may be 
gained. 
 
4. APPLICATION OF GLUE TO THE NAIZIN 
CATCHMENT 
 
Feasible parameter ranges were selected for the Naizin 
catchment and multiple parameter sets were selected 
(10000). TOPMODEL was then run for all parameter sets, 
the model efficiency produced being associated with that 
parameter set. Figure 1 shows the scattergrams for the 
application of TOPMODEL to the Naizin catchment where 
the likelihood associated with each model parameterisation is 
achieved through conditioning on the observed discharge 
time series alone.  
 
 

 
 
 

Figure 1. Scattergrams for four TOPMODEL parameters 
plotted against model efficiency. 

 
Limited ground truth data were available for a subcatchment 
of the Naizin basin providing some estimate of the extent of 
saturated areas. Utilising an approach based upon the 
combination of the topographic index and the Saturation 
Potential Index (Gineste et al., 1997) the ground truth data 
were extrapolated to yield estimates of the total catchment 
saturated area extent (Franks et al., 1997). As this 
extrapolation is inherently uncertain, multiple combinations 
of the topographic index – SPI were used and a range of 
feasible saturated areas produced. Figure 2 shows a map of 
the distribution of saturated areas as predicted by one 
combination of the topographic and saturation potential 
indices. Figure 3 shows the derived range of saturated areas 
for the Naizin catchment for a given storm incororporating 
the uncertainty assoicated with the extrapolation from the 
limited ground truth to the catchment wide area. The derived 
likelihood weighted saturated areas may therefore be used as 
a secondary modelling objective against which model 
simulations can be compared or rejected.  



 

 

 

 
Figure 2. Derived prediction of saturated area from the 

extrapolation of combined topographic index and Saturation 
Potential Index, thresholded against ground truth data    

 

 
Figure 3. Derived estimates of catchment wide saturated 

areal extent 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Scattergrams after conditioning parameter sets 
additional saturation criteria 

 

Figure 4 shows the same scattergrams after the additional 
conditioning afforded by the derived uncertain estimates of 
the saturated areas. As can be seen by comparison with 
Figure 1, the imposition of additional modelling objectives 
has yielded significant modification of the acceptable 
parameter sets. Most notably, the catchment effective 
saturated transmissivity parameter has been shown to be 
greatly constrained through such conditioning. 
 
4.1 Predictive uncertainty 
 
Through application of the GLUE methodology, the 
predictive uncertainty associated with the multiple acceptable 
parameter sets may be derived.  The utility of the saturated 
areal extent as an additional modelling objective is 
graphically demonstrated in Figure 5. Following the GLUE 
methodology, uncertainty bounds are shown when 
propagated according to the model simulations deemed 
acceptable according to the reproduction of the discharge 
time series (i.e. through the model efficiency alone), and  
with the additional saturated area constraint.  
 
As can be seen, marked differences in the derived uncertainty 
bounds is achieved. The effect of the additional constraint is 
to (i) narrow the range of the uncertainty bounds, therefore 
indicating reduced predictive uncertainty, and (ii) produce 
improved uncertainty estimates as indicated by the bounds 
encompassing more of the discharge hydrograph.    
 
 

 
 

 

 



 

 

Figure 5 a,b. Predictive uncertainty bounds after 
conditioning on  reproduction of the discharge time series 
alone, and reproduction of the discharge time series and 

updated with the range of likely catchment wide saturated 
areal extent. 

 
5 APPLICATION OF UNCERTAIN SATURATION 
CONSTRAINT TO THE BARU CATCHMENT 
 
Feasible parameter ranges were specified for the Baru 
catchment from which 10000 model parameter sets were 
uniformly sampled. TOPMODEL was run with these 
parameter sets, and a model efficiency was associated with 
each set according to the reproduction of the discharge 
hydrograph. 
 
Figure 6 shows the scattergrams for four of the TOPMODEL 
parameters after conditioning on discharges alone. As can be 
seen, the scattergrams show that good fits to the discharge 
data may be achieved with very diverse values of each of the 
parameters. This indicates that there is insufficient 
information contained within the discharge time series to 
constrain the parameters of the model. 
 

 
Figure 6. Scattergrams for four of the TOPMODEL 

parameters plotted against model efficiency. 
 
Figure 7 shows the modified scattergrams of acceptable 
parameter sets after the rejection of parameter set which 
produced saturated areas not deemed realistic. As can be 
seen, significant constraint of the transmissivity parameter 
occurs as a function of this additional, albeit uncertain, 
conditioning. 
 
5.1 Comparison of multi-scale permeabilities 
 
By applying uncertain saturation criterion to the conditioning 
process, it has been shown that constrained ranges of the 
transmissivity parameter have resulted. At the Baru site, 

extensive core-scale permeability measurements have been 
undertaken with a ring based permeameter (Chappell and 
Ternan, 1997), in addition to hillslope-scale permeabilities 
derived by tracer tests. Thus, the constrained model inversion 
enables the comparison of the range of model derived 
permeability estimates over the depth of the saturated media 
after correction for the effects of media depth and effective 
porosity (Chappell et al., 1997). 
 

 
 
 
Figure 7. Scattergrams for the four TOPMODEL parameters 

after additional evaluation of each of the simulations with 
respect to the predicted saturated areal extent. Note the 
marked constraint of both the m and ln(T0) parameters. 

 
Choosing the maximum and minimum values of the 
catchment effective saturated transmissivity and 
corresponding values of the m parameter, from those 
simulations deemed acceptable with an efficiency greater 
than 0.5, the range of model inverted saturated permeability 
was found to be 0.527 x 106 to 13.7 x 106 m/s. Core based 
measurements displayed a smaller range between 0.158 x 106 
to 0.311 x 106 m/s – clearly less than the model derived 
range, whilst ‘pulse-wave’ experiments on an hillslope of the 
catchment yielded a range of permeabilities from 8.2 x 106 to 
13.6 x 106 m/s, which are more consistent with the model 
results. 
 
These results indicate differences between measures of 
permeability at a range of scales. Both hillslope and model 
inverted estimates are considerably higher than the core 
based measures, indicating that there may be a greater non-
linearity of the catchment response than can be inferred from 
core based measurements alone. Indeed, the higher estimates 
of both the model and the hillslope measures are consistent 
with the occurrence and dominance of soil pipe processes. 
Though any firm conclusion is tentative, the additional 
constraint of feasible model parameterisations may provide 

 



 

 

increased confidence in the inversion of models within an 
uncertainty framework for such comparisons and may 
provide insight into catchment process behaviours.       
 
 
6. Discussion 
 
The complexity of the processes to be represented for 
environmental management requires parameteric complexity 
of process orientated models.  Given the inability to measure 
the distributed catchment characteristics accurately 
calibration is therefore required. For the purposes of 
environmental management, if a process based model is 
required, then it is also required that those processes are 
adequately defined. As has been shown, discharge time series 
do not provide adequate information for the robust 
calibration of process hydrological models – one can 
reproduce the discharge time series reasonably well for the 
calibration period from many areas of the parameter space, 
and hence with a range of process representations.  For 
instance, it is quite possible that a global optimum parameter 
set (in terms of the reproduction of the discharge) might be 
rejected through consideration of the internal states, such as 
the contributing saturated area.  This parameteric uncertainty 
leads to a wide range of predictive capability.   
 
The application of the GLUE methodology to the Naizin 
catchment has shown that significant uncertainty must be 
associated with the predictions of such models when 
calibrated against discharge data alone.  Through the 
specification of a secondary modelling objective, the 
parameteric uncertainty has been greatly reduced, most 
markedly in the constraint of the catchment effective 
saturated transmissivity parameter.  Additionally, this 
reduction in parameteric uncertainty translates into a marked 
reduction in the predictive uncertainty: when uncertainty 
bounds were propagated for the constrained parameter sets, a 
marked and consistent reduction of predictive uncertainty 
resulted from the additional constraint.  
 
Similarly, the imposition of an additional modelling 
objective on the conditioning of TOPMODEL for the Baru 
catchment has been shown to lead to markedly constrained 
parameter ranges of both the catchment effective saturated 
transmissivity parameter, and also the gradient of the 
exponential storage-discharge relationship (parameter m).     
 
The utility of  uncertain estimates of saturated area on the 
conditioning of physically based models has therefore been 
shown to be significant.  Despite uncertainty in the 
specification of the additional constraint, more robust  model 
conditioning may be achieved within an uncertainty 
framework.   
 
The results of this work indicate that continuous 
measurement of discharge, whilst useful, is not sufficient to 
identify suitable model parameterisations. Additional 
information is required.  This work also indicates that for 

application to an unguaged catchment, multiple 
parameterisations might be better identified given 
information pertaining to the specification of the dominant 
flow producing mechanisms, such as an uncertain 
appreciation of the hydrograph recession and the uncertain 
quantification of the maximum discharge and saturated area 
extent for a given storm or storm period. 
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