Nick Chappell

Interaction between Hydrol ogical and Meteorol ogical Processes in S E Asia

CRES Hydrology & Fluid Dynamics Group IENS, Lancaster University, Lancaster LA1 4YQ

 Tropical hydrology : current research questions ... need new meteorological input

Tropical meteorology (partic GCM studies)
... need new hydrological input

Illustrate with some of our work in tropical S E Asia

Tropical Hydrology: Need For New Meteorological Input

• rainfall-runoff processes within (tropical) catchments

Spatially distributed processes within 0.1-10 km² exp catchments

e.g., wetness index 0.44 km² Baru catchment, Borneo (Chappell *et al.*, 1998 *Hydrol. Process.)* Now see rainfall not lacking structure a fine-scales ...

Stochastic (distance-related) structure 4 km² Sapat Kalisun Exp. Catchment, incl. Baru (K Bidin PhD thesis)

Deterministic (topography-related) structure seen with monsoonal changes in wind direction

NE monsoon (Nov-Apr)

SW monsoon (May-Oct)

Circles on map are proportional to 6-month rainfall totals NB axes are in kilometers, not metres

NE monsoon (Nov-Apr)

Possible windfield giving rise to rainfall pattern Bidin, Chappell, Dalimin and Sinun, submitted, *Hydrol. Earth Syst. Sci.*

SW monsoon (May-Oct)

need more meteorological input to catchment studies

• represent (tropical) R-R processes over larger scales

721 km² Segama catchment, Borneo (incl. Baru, SK)

Describe R-R processes at 100-5,000 km² scale ... understand changes in dominant process with scale changes

Problem of sparse raingauge networks when modelling rainfall - riverflow of large tropical catchments

One raingauge / 721 km²: only 46 % explanation of riverflow using Data-Based-Mechanistic model (with non-linearity)

S Vongtanaboon, PhD programme: Hydrology of large tropical catchments

Multiple, nested catchments throughout Thailand, including 3,853 km² Mae Chaem catchment (below)

- scale effects with changing scale

- process / model structure ID (with DBM), dependent on rainfall sampling density

Also using same Mae Chaem catchment is the GAME-T programme potential value of obtaining regional (1,000 km²) rainfall from ...

Calibrated radar

GAME-Tropics: GEWEX Asian Monsoon Experiment

Improving resolution satellites (?)

e.g., TRMM

Tropical Rainfall Measuring Mission

> NASA (USA) NSDA (Japan)

ref. Martin Fowell PhD programme

• land-use change impacts on (tropical) hydrological processes

River flashiness, evapotranspiration, river turbidity, river chemical quality etc

(1) Modelling:

Utility of physically based modelling of catchment rainfallrunoff relationships is limited due to **parameter uncertainty** during the calibration process

e.g., Beven (2001) *Hydrol. Earth Syst. Sci.*

Left: Efficiency vs possible parameter values in a 4parameter model, Baru catchment (Chappell *et al.*, 1998 *Hydrol Process*)

0.6

(2) Empirical field studies:

Too few land-use change case studies for tropics (Chappell et al., 2002b, CUP)

partic as sensitive to time undertaken during natural climatic cycles & trends

Rainfall-driven phenomenon of suspended sediment flux

e.g., Segama catchment

(partly disturbed by commercial, selective logging) 8-year record

analysed using

Dynamic Harmonic Regression (DHR) model

Young, Pedregal & Tych (1999)

recursive interpolation, extrapolation and smoothing algorithm for non-stationary time-series

$$SS_{(t)} = T_t + S_t + e_t$$

- *T_t* trend, incl. inter-annual cyclicity & longer-term drifts
- S_t within-year cycles or seasonality
- e_t white noise

Seasonal rainfall cycles magnified

within-year cyclicity 3 to 5 mm day⁻¹ rainfall equivalents within-year cyclicity 5 to 20 mm day⁻¹ rainfall equivalents

Inter-annual rainfall cycles (e.g., ENSO) magnified

inter-annual cyclicity $\approx 2 \text{ mm day}^1$

rainfall equivalents

inter-annual cyclicity ≈ 4 mm day⁻¹ rainfall equivalents

(Chappell et al., 2002b, CUP)

Effects seasonality & ENSO much greater impact on annual sediment budgets than expected from dynamics in rainfall

thus relative impact of partic land-use changes (e.g., forestry) strongly dependant on season & position in ENSO cycle activities take place ('paired studies' do not account for all effects)

e.g., road constr & harvesting conducted at peak in La Nina period greater rel impact same operations in El Niño period

Tropical Meteorology: Need For New Hydrological Input

• land-cover change impacts on regional evaporation

Good field studies (e.g., Gash *et al.*, 1996, *Wiley*) & GCM land-use change simulations (e.g., Zhang *et al.*, 1996 *J. Clim.*) **based on very simple vegetation covers**

A key land-cover in SE Asia - selectively managed forest, is alone highly complex

Even forest loss in the Amazon now thought to be complex (Drigo, 2002, *CUP*)

clearfelling in humid tropics

red evapotranspiration is well attested by field studies (Oyebande, 1988; Bruijnzeel, 1990; 1996; 2001)

A. selective logging (localised disturbance)

- smaller gaps where:
- (i) new growth of pioneer trees,
- (ii) accelerated growth of younger & smaller commercial trees, &/or
- (ii) vine growth takes place

 red ET by removal of climax trees partly offset by rapid growth of water demanding pioneer trees & vines

e.g., High rates of transpiration from:

- vines in secondary Amazonian forest (Restom & Nepstad, 2001)

- pioneer trees in E. Malaysian rainforest (Eschenbach *et al.*, 1998)

• also some types of canopy damage can give inc wet-canopy-evap (Bidin, 2001; Chappell *et al.*, 2001)

B. Large, largely unexplained, range in rates in wet canopy evaporation for different locations (Bruijnzeel, 1990; 1996; 2001)

Gash *et al.*, (2002, *CUP*) hypothesis of strong inland vs coastal effects rather than purely vegetation differences

Difficult to derive regional estimates of evapotranspiration from assemblages of observed field data

diagram from Hayward et al. (1999)

how do we judge / validate GCM simulations of evapotranspiration ?

• rainfall-runoff pathways in GCMs affecting vapour transfer to atmos

Common belief that most rainfall that generates tropical hydrographs is from purely overland flow, and that this increases dramatically with terrain disturbance during deforestation. Also seen within some GCM simulations (e.g., Lean *et al.*, 1996 *Wiley*)

tropical rainforest slopes in Africa (e.g., Dabin, 1957, *DPBS*), S America (e.g., Cailleux, 1959, *MSCG*) & SE Asia (e.g., Chappell *et al.*, 1999a, *Phil. Trans. R. Soc. Lond. B.*) usually generate **only a few % overland flow** per unit slope area

This means there is more soil-water (& deeper sources) available to sustain transpiration

Conclusions

Catchment hydrologists would benefit from greater meteorologist involvement...

- nature of the catchment rainfall distribution (the driver for most tropical hydrological processes)
- new techniques providing more accurate regional rainfall
- underling the importance of natural dynamics of the climate when hydrologists attempt to identify land-use change impacts

GCM simulations of tropical climate or predictions of land-use impacts on climate would benefit from hydrologists

- providing more robust estimates of the components of regional evapotranspiration
- disseminating current evidence & theories of flow pathways within the tropical biosphere