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ABSTRACT

A novel solution to the estimation of catchment rainfall at a sub-hourly resolution from measured
streamflow is introduced and evaluated for two basins with markedly different flow pathways and
rainfall regimes. It combines a continuous-time transfer function model with regularised derivative
estimates obtained using a recursive method with capacity for handling missing data. The method has
general implications for off-line estimation of unknown inputs as well as robust estimation of de-
rivatives. It is compared with an existing approach using a range of model metrics, including residuals
analysis and visuals; and is shown to recover the salient features of the observed, sub-hourly rainfall,
sufficient to produce a precise estimate of streamflow, indistinguishable from the output of the catch-
ment model in response to the observed rainfall data. Results indicate potential for use of this method in
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environment-related applications for periods lacking sub-hourly rainfall observations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate simulation of stream hydrographs is strongly depen-
dent on the availability of rainfall data at a sufficiently high, sub-
daily sampling intensity (Hjelmfelt, 1981; Littlewood and Croke,
2013). Additionally, hydrograph simulation may be sensitive to
the spatial intensity of rainfall sampling (Ogden and Julien, 1994;
Bardossy and Das, 2008) or to the uncertainties arising from local
calibrations of rainfall radar (Cunha et al., 2012) or individual
raingauges (Yu et al., 1997). Despite this importance, most gauged
basins lack the necessary long-term, sub-hourly rainfall records
(and adequate spatial rainfall sampling) to combine with the
streamflow records that are, by contrast, typically monitored at
sub-hourly intervals for several decades. If those short-term rainfall
characteristics responsible for producing stream hydrographs (see
Eagleson, 1967; Obled et al., 1994) can be estimated from stream-
flow, the resultant synthetic rainfall series may be useful in many
applications. For example, synthetic rainfall records could be
derived for basins with long-term streamflow, but only short-term
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rainfall, to: (1) evaluate long-term, rainfall estimates from Global
Circulation Models for specific catchments (see Fujihara et al,
2008), (2) provide long-term rainfall records for long-term
aquatic ecology studies (e.g., Ormerod and Durance, 2009), and
(3) identify localised rainfall cells or snowfall events that affect the
streamflow but are poorly represented in raingauge records
(Kirchner, 2009).

This study uses a Data-Based Mechanistic (DBM) modelling
approach to identify linear Continuous-Time Transfer Function (CT-
TF) models (Young and Garnier, 2006) between sub-hourly rainfall
and streamflow. These forward CT-TF models are then inverted to
derive rainfall time-series using a novel method that utilises reg-
ularisation techniques. Algorithms within the CAPTAIN Toolbox
(Taylor et al., 2007) are used for this modelling and the method-
ology evaluated by application to two micro- or headwater-
catchments with contrasting rainfall and response characteristics,
namely the humid tropical Baru catchment and the humid
temperate Blind Beck catchment. Classical rainfall-runoff non-
linearity utilises a power law relationship between measured and
effective rainfall (Beven, 2011) implemented as a Hammerstein
type non-linearity (Wang and Henriksen, 1994) separated from the
linear dynamics of the transfer function. As the power function is
monotonic, it is easily inverted, making it trivial to apply in
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combination with the effective rainfall estimate generated by the
proposed method as illustrated in Fig. 1.

The graphical expression of the forward CT-TF model of a rain-
fall-streamflow response in discrete time is the impulse response
function and this is directly equivalent to the unit hydrograph or
UH developed by Sherman (1932). Inversion of the UH or its CT-TF
equivalent to derive rainfall from streamflow has been attempted
by Hino (1986), Croke (2006), Kirchner (2009), Andrews et al.
(2010) and Young and Sumistawska (2012). These studies have
used a range of different approaches. For example, Hino (1986)
applied a standard regularised Least Squares (LS) solution to the
inversion of a catchment model of ARX form (i.e., autoregressive
with exogenous variables: see Box et al., 2008). This approach dif-
fers from the CT-TF based approach proposed here, in that poten-
tially huge matrix inversions are needed. Kirchner (2009) used a
very different method that involved the construction of a first-
order, non-linear differential equation linking rainfall, evapora-
tion and streamflow through the sensitivity function, resulting in a
compound measure of precipitation and evaporation, which is then
reduced to rainfall through making assumptions about the rela-
tionship between the rainfall and residual rainfall (i.e., rainfall
minus evaporation). Kirchner's method has been applied to the
Rietholzbach catchment in Switzerland (Teuling et al., 2010) and to
24 diverse catchments in Luxembourg (Krier et al., 2012) where it
reproduces the streamflow and storage dynamics for catchments
characterised by a single storage—discharge relationship but cannot
explain more complex travel times. Andrews et al. (2010) used in-
verse filtering, applying similar CAPTAIN modelling methods to the
ones proposed here, but using a direct inverse transfer function in
discrete time. As this is methodologically the nearest approach to
the proposed one and, at the same time, highlights the practical
problems with direct inversion of transfer function models, it was
chosen as a comparison in this study. Young and Sumistawska
(2012) applied non-minimal state-space feedback control
methods to inversion of discrete time transfer function models,
based on the work of Antsaklis (1978).

Jakeman and Young (1984) were the first to indicate that
recursive regularisation might be a useful approach to derive
rainfall time-series from the UH, but without offering an imple-
mentation of the algorithm or examples. The novel method pro-
posed here has been developed by combining these ideas with
developments in the identification of CT-TF models (e.g., Young and
Garnier, 2006) and improvements in the CAPTAIN routines (Taylor
et al., 2007). The inverse process is based on differentiation (Young,
2006), and so may be expected to be ill-posed and sensitive to noise
in the streamflow data (O'Sullivan, 1986; Neumaier, 1998;
Tarantola, 2005). The direct inverse of the discrete transfer
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function method involves differencing, the key issue addressed in
the proposed method by using regularised derivatives, potentially
its major advantage.

The generality of our approach indicates that it could be used
within any modelling framework involving DBM or top-down
catchment modelling. Integrating it within other frameworks, for
instance to assess the information content of hydrological data
(Beven and Smith, 2014) is already a part of an existing project
which partly funded this study (NERC CREDIBLE project — see Ac-
knowledgements for details). Another good example of the use for
this approach would be within the hydromad framework
(Andrews et al., 2011) where it could be a part of either model or
data evaluation process. Such application could be based on the
reasoning that a model and data combo (the principle of DBM
approach), which invert well should be more reliable (this assertion
will be the subject of future work). Within the same hydromad
framework a similar reasoning could be used to verify the place-
ment of raingauges within a catchment. If the inversion generates
poorly fitting inferred rainfall with many negative periods it could
indicate that the present raingauges do not provide full information
about the catchment rainfall due to their placement. Andrews et al.
(2011) also indicate the use of such inversion routines in calibration
of full hydrological models.

Reaching further out, beyond the discipline of hydrology, there
are many other situations where either input estimation of a dy-
namic system (e.g., Maquin, 1994; Yang and Wilde, 1988 and many
others), or more generally, robust derivative estimation problems
(De Brabanter et al., 2011) could benefit from the solution provided
here. The off-line character of the method, characteristic for
regularisation-based methods, excludes on-line applications, such
as input observers in control engineering, but provides more flex-
ibility, for instance by easy compensation of pure time delays in the
transfer functions.

2. Novel parsimonious method for input estimation using
reduced order output derivatives

To obtain a well-defined and effective inverse of any trans-
formation (e.g., UH or equivalently a TF), the transformation itself
must be well defined. It must capture the character of the system
without any unnecessary complexity that would result in the
transformation itself being ill-defined. This is the essence of the
philosophy of the Data-Based Mechanistic (DBM) approach of
Young (1998, 1999) that aims to produce models that fit the data
well with as few parameters as are necessary to capture the
dominant dynamic modes of the system. CAPTAIN tools are used to
identify models using this underlying philosophy.

Linear
Transfer
Function

Inverse
Non-linearity

Fig. 1. The use of Hammerstein-type non-linearity in the model identification (a) and inversion (b) processes where P is the observed rainfall, P, is the effective rainfall, Q is the
observed streamflow, Py, is the inferred effective rainfall and Py, is the inferred rainfall with the non-linearity reapplied.
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The relationship between rainfall and streamflow expressed as a
purely linear CT-TF may be given by:

BoS™ + B15™ 1 + -+ 4 Bm |
ST st 4 g

Q= e R (1)

where Q and R are Laplace transforms of Q(t) (streamflow) and R(t)
(discharge), s" is the Laplace operator for r time derivative,
(s" =d'/dt"), e=5* is the Laplace transform for pure time delay be-
tween rainfall and the initial streamflow response 7, with the model
parameter vector: 6 = [aq az---anBoB1---Bm|’ of dimension
n+ m+ 1. These parameters are estimated from the data along with
their covariance matrix, Cg, using the Refined Instrumental Variable
(RIV) method (Young and Jakeman, 1980) within the CAPTAIN
toolbox. With CT-TFs, fast responding modes of catchment response
can be estimated at the same time as very slow modes; one of their
key advantages over discrete time approaches. Systems with
widely-spaced time constants (‘stiff systems’) are known to be
difficult to handle numerically including estimation of their
parameters.

By its very nature (i.e., point measurements of rainfall), a
transfer function model encapsulates both temporal and spatial
modes of integration of the rainfall by the catchment. The inverse
relationship expressing the streamflow-derived rainfall using the
transfer function equation (2) will have the general form of:

R :b0$n+b15n_1 +"'+bneSTQ )
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where ai = 8;/8p, i=1,...,m and bi = «;/B8g, i = 1,...,n to ensure
the denominator polynomial is monic, with n > m as in Eq. (2). The
negative time delay is accounted for by off-line data-offset adjust-
ment. The ill-posed nature of this inverse relationship is aggravated
by the fact that often n is greater than m by more than one, reflecting
the strong integrative character of catchment systems. This results
in pure derivatives of the output that are often of an order higher
than one (see Eq. (2)). Indeed most software environments such as
Matlab do not even allow simulation of such systems, labelling them
as improper. It should be noted here that the danger of obtaining
unstable inverse models when the original model is non-minimum-
phase (i.e., has zeroes in the right half-plane) is avoided altogether,
as the DBM modelling methodology means that such models will be
rejected at an early stage as non-physical.

The proposed solution, illustrated in Equation (3), consists of
using regularised derivative estimates that is consistent with, but
extending the approach proposed by Jakeman and Young (1984),
namely:

_ bo{sa) b s} 4o b
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(3)

where {s/"a}* = c{d"//&?"Q} is the Laplace transform of the opti-
mised regularised estimate of the n™ time derivative of Q: d"/dt"Q.
Note that for n > m this equation is equivalent to
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(4)
where:
AGS)=s"+a;s™ 1+ +ap (5)

In the latter, the final component is a proper transfer function,
the preceding components are weighted (by bg---bn_n respectively)
regularised derivatives of order n---m + 1, all of them filtered with
A(s). It is worth noting that because of the filtering, the nth regu-
larised derivative estimate is not indeed required, instead the
((n —m)® ..., 15 order regularised derivative filtered with proper
transfer functions is used, as shown below:

5191 < Dos™ Bos™ { g }
Q) =~ a1 (6)
Equation (4) (with substitution based on Equation (6)) can be
interpreted as a bank of filtered regularised derivatives added
together, weighted by the inverse TF numerator coefficients by, b1,
., bp. In practical implementation therefore, the number of regu-
larised derivatives estimated is limited to the difference between
the orders of the numerator and the denominator of the original
transfer function (3), i.e., (n — m), as the remaining derivatives are
used implicitly in their filtered form making the algorithm more
robust than its alternatives using a discrete transfer function in-
verse. Use of regularisation results in a trade-off between moder-
ating the noise-amplifying ill-effects of the inversion process, and
of the temporal resolution of the resulting rainfall time-series
estimated. In order to obtain regularised estimates of derivatives
of streamflow time-series up to order n — m, the output rainfall
time-series is modelled as an (n — m)™ order Integrated Random
Walk (IRW) process described in the following section.

A(s){

2.1. Estimation and implementation of regularised derivatives
(RegDer method)

The use of regularised derivatives in model estimation is not a
new development — Jakeman and Young (1984) show how recur-
sive Kalman Filter (KF) algorithms (Kalman, 1960) and Fixed In-
terval Smoothing (FIS, e.g., Norton, 2009) produce reliable
estimates of derivatives of time-series. Finite difference numerical
schemes normally involve forms of direct differencing of signals,
and so, while many will be stable, they will amplify the high fre-
quency components of the discharge signal, thus producing noise
artefacts. When they form filters with a degree of smoothing, they
introduce filter artefacts, i.e., side lobes (FIR or polynomial filters
effectively using combined central differences). Representative
examples of this approach can be found i.a. in Luo et al. (2005),
where the complicated spectra of Savitzky—Golay differentiators
are shown. Other approaches to non-parametric derivative esti-
mation (parametric estimation is seen as constraining) often
involve forms of approximation in suitable functional bases
including splines and other kernel smoothing forms. Derivative
estimation or approximation is the subject of many studies e.g., De
Brabanter et al. (2011), who use the kernel approach within a more
complicated framework. Regularisation based derivative estima-
tion was introduced several decades ago (Anderssen and
Bloomfield, 1974). Most regularisation approaches use matrix-
based methods involving operations on large matrices of the size of
the data series, which is not practical for the long, frequently-
sampled series used in hydrology and other environmental appli-
cations, unlike the recursive approach implemented here.
Moussaoui et al. (2005) evaluated the possibilities of estimating
derivatives and inputs of dynamic systems using regularisation
techniques by applying a Tikhonov regularisation and then using
Poisson filtering to jointly estimate parameters and signals. Their
use of filtering techniques resulted in issues arising from phase lags
in the estimated signals. They referred to Jakeman and Young
(1984) with respect to possible solutions involving smoothing,
but without proposing a method. In any case, smoothing is only
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applicable when rainfall is present at all times, which is not the case
that this method is being developed to address.

As the rainfall and streamflow data are normally of time series
nature with a fixed sampling rate, a discrete-time State-Space
approach is employed to estimate the derivatives. This can be done
because values between the sampling time instances are not used,
and there is a direct equivalence between continuous-time and
discrete-time models in regularly sampled data.

A basic discrete time Stochastic State-Space formulation is used
(see e.g., Young et al., 1999) with the state transition equation as in
Jakeman and Young (1984):

X1 = [(1) ”xk+ [ﬂvk (7)

where the state x, = [Q, dQ,]" is composed of level state Q; and
slope state dQ of the Integrated Random Walk process which is used
to describe Q(t) with t = kAt where At is the sampling interval. It is
this second component of the state dQy that provides the estimated
time derivative of the observed process (given At). It is assumed that
the discrete time is sampled uniformly with samples every time unit.
The assumption is based on the fact that stage (and hence stream-
flow) is normally sampled uniformly by dataloggers. Rainfall is
sampled normally using tipping-bucket raingauges and converted
onto the same time basis as the streamflow data. The process is not
observed directly, but through the observation equation:

QP =[1 0]x+ey 8)

where ey and vi are zero-mean, serially uncorrelated white noise
sequences.

Equation (7) shows the manner of obtaining the 1st order de-
rivative estimate, but it is easy to build up the State-Space to
generate estimates of higher order derivatives.

The ratio of variances of the state- and observation-disturbance
is termed the Noise Variance Ratio (NVR):

0.2
NVR = —; 9)
O¢

which is related, reciprocally, to the smoothness of the estimate, or
the regularisation parameter (Jakeman and Young, 1984). This form
of Stochastic State-Space formulation lends itself to the state esti-
mation procedures of the KF and FIS (Bryson and Ho, 1969), noting
that the combined KF/FIS algorithms produce not only optimal
smooth estimates of both states but also estimates of their uncer-
tainty bounds. The variance parameters ¢2 and o2, or in this simpli-
fied case the NVR parameter of the KF/FIS algorithm, are normally
estimated using optimisation, usually involving Maximum Likeli-
hood (ML) objective functions. Variants of the objective function are
discussed by Tych et al. (2002) and Taylor et al. (2007). In the pro-
posed approach, the objective function is modified from the usual ML
approach to a measure of how well the estimated rainfall fits the
actual rainfall time series. As the method is based primarily upon the
use of Regularised Derivatives it is further called the RegDer method.

2.2. Comparison with the discrete-time inversion procedure (InvTF
method)

For comparison with the RegDer method, the method of
Andrews et al. (2010) based on the use of the direct inverse of a
discrete transfer function, was also applied to the two catchment
data sets. Since a discrete TF is used, the inverse is easy to simulate
directly by differencing or near-differencing (i.e., no explicit dif-
ferentiation). In discrete time form, this gives:

Bo+ 81z 4+ + Bz ™
1+az7 1+ +apz "

Q= Ry (10)

where the backward shift operator z-'y(k) = y(k — 1) and t = kAt is
the sample time of the kth sample. The operator z is used here
instead of g (often used in system identification literature) to avoid
confusion with standard hydrological practice that uses letter q to
denote streamflow. The same notation and model orders were used
for the parameters vector as for the CT-TF model (Equation (1)).
Estimation of the discrete model was undertaken using the discrete
version of the RIV method, implemented in the CAPTAIN Toolbox.
The estimated rainfall time-series was then obtained simply by
rearranging the above equation, as in Andrews et al. (2010):

Re 1 = ;—Omk a1 Qe 1+ @2Q 2) — (B1Rk 2 + B2Ry 3))
(11)

This is shown here for n = m =2 and 6 = 1 for clarity. As with
the continuous-time form, the time delay, estimated from the data,
can be removed during the off-line processing. This approach,
based on a direct inverse of a discrete transfer function (Andrews
et al., 2010), is here called InvTF.

3. First evaluation of the new RegDer methodology (including
InvTF comparisons)

In order to evaluate the RegDer algorithm's performance, data
from two headwater experimental catchments exhibiting both
contrasting rainfall regimes and hydrological pathways were
compared. Previous studies have identified linear models for both
catchments (Chappell et al., 2006 — Baru; Ockenden and Chappell,
2011 — Blind Beck). Subsequent analysis using the classic bilinear
power law (Beven, 2011) has confirmed this assumption. On this
basis, linear modelling was applied in both cases. Streamflow was
sampled uniformly by dataloggers, while rainfall was sampled us-
ing tipping-bucket raingauges then converted onto the same time
basis as the streamflow data.

3.1. Choice of evaluation metrics

Alexandrov et al. (2011) suggest a general framework for model
assessment and a wide variety of possible metrics are available.
Bennett et al. (2013) present a range of possible tests including
numerical, graphical and qualitative techniques and a selection of
these was employed in this study. Some were found to be inap-
propriate as they involve a normal distribution of data and/or re-
siduals or other critical assumptions. Q—Q plots of the residuals
(not shown here) clearly indicated that the assumption of
normality cannot be made. In future work, decision theory may
provide a framework for choosing between both modelling
methods and competing model structures.

Commonly, the simplified Nash—Sutcliffe Efficiency (NSE or R?)
is used to compare the performance of hydrological models. Several
models may be identified which fit the data well (i.e., equifinality:
Beven, 2006) so the Young Information Criterion (YIC: Young, 2001)
can be used to differentiate between these models. The YIC is an
objective measure combining the goodness of fit with a measure of
over-parameterisation.

Once acceptable forward models (i.e., rainfall—runoff) have been
selected (using R? and YIC) they are inverted and the performance
of the inverse models compared using a range of metrics including
R?, basic statistics of the residuals and visual ability to match peak
values. The inferred (or synthetic) rainfall sequences were also
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Fig. 2. Measured and estimated streamflow for: a) Baru (at 5 min intervals) and b) Blind Beck (at 15 min intervals), together with the associated hyetograms and impulse responses.

compared visually with each other and with the observed rainfall.
Inferred and observed rainfall series were then used as inputs to the
original forward models and the generated modelled flow se-
quences compared using the R? values and visual comparisons.
Statistical analysis of the residuals of both models gives an addi-
tional insight into the differences between the catchments and
rainfall regimes, as well as the differences between the inversion
approaches.

Model uncertainty is evaluated using Monte Carlo Simulations
(MCS) for both the forward and the inverse models utilising the
covariance matrix generated as part of the output from the

estimation routines contained in the CAPTAIN Toolbox for Matlab
(Taylor et al., 2007). In this analysis, the guidelines for validation of
DBM models published by Young (2001) are followed. The models
thus generated can be used to investigate the sensitivity of the
inversion process to the parameterisation of the forward model.

3.2. Data: Baru tropical catchment responses
The 0.44 km? Baru catchment is situated in the headwaters of

the Segama river located in Sabah on the northern tip of Borneo,
East Malaysia (4° 58 N 117° 49’ E). The climate is equatorial with a
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Table 1

The best CT-TF models fitted to subsets of data for Blind Beck (sampled at 15 min
intervals) and Baru (sampled at 5 min intervals). There is little difference in effi-
ciency (R?) between the different models so selection was based on the lowest order
model with the lowest YIC (Young, 2001). The YIC is an objective measure combining
the goodness of fit with a measure of over-parameterisation. A model with a large
negative YIC fits the data well with a small number of parameters.

Catchment Model structure R? YIC Time constants (h)
(n.m.d] 1st 2nd

Blind Beck [2,2,3] 0.983 -6.711 6.35 22.10

Baru [2,2,3] 0.878 —-8.054 1.14 20.56

twenty-six year (1985—2010) mean rainfall of 2849 mm (Walsh
et al,, 2011) showing no marked seasonality but tending to fall in
short (<15 min) convective events showing high spatial variability
and intensities much higher than those of temperate UK (Bidin and
Chappell, 2003, 2006). Due to the high spatial variability, a network
of 6 automatic rain-gauges (13.6 gauges per km?) was used to
derive the catchment-average rainfall using the Thiessen Polygon
method. Haplic alisols, typically 1.5 m in depth and with a high
infiltration capacity (Chappell et al., 1998) are underlain by rela-
tively impermeable mudstone bedrock resulting in the dominance
of comparatively shallow sub-surface pathways in this basin
(Chappell et al., 2006). As a result of the high rainfall intensity and
shallow water pathways the stream response is very flashy (i.e.,
rapid recession in the impulse response function). The data used in
the analysis are from February 1996 sampled at 5 min intervals
(Fig. 2a) and have been modelled previously by Chappell et al.
(1999) and Walsh et al. (2011).

3.3. Data: Blind Beck temperate catchment response

The Blind Beck catchment has an area of 8.8 km? and lies in the
headwaters of the Eden basin in North West England, UK (54.51°N
2.38°W). The basin's response shows evidence of deep hydrological
pathways due to the presence of deep limestone and sandstone
aquifers, and this has resulted in a damped hydrograph response
(Mayes et al., 2006; Ockenden and Chappell, 2011; Ockenden et al.,
2014). Winter rainfall in this basin is derived from frontal systems
with typically lower intensities than the convective systems in the
tropics (Reynard and Stewart, 1993). Data from a single tipping-
bucket raingauge (i.e., 0.1 gauges per km?) located in the middle
of the catchment was used in this study. The data used in the
analysis covers the period from 26th Dec 2007 at 16:45 to 31st
December 2007 at 21:45 sampled at 15 min intervals (Fig. 2b) and
was previously modelled by Ockenden and Chappell (2011).

The choice of these two experimental catchments, therefore,
allowed the initial evaluation of the estimation of catchment
rainfall from streamflow for the end-member extremes of a basin
with tropical convective rainfall and shallow flow pathways to a
basin with temperate frontal rainfall (i.e., much lower intensity)
and deep flow pathways (i.e., much greater basin damping or
temporal integration).

4. First results and discussion

Forward CT-TF models identified for Blind Beck data explained
over 98% of the variance in the streamflow, whilst those for the
Baru fit slightly less well, explaining 88% — see Table 1 for the R?,
YIC (Young, 2001), and time-constants of the best forward models
for each catchment, based on a high R? with a large negative YIC
value according to DBM methodology. The simulated streamflows
from a 2nd-order model for the two basins are shown in Fig. 2. The
impulse response function (i.e., unit hydrograph) for the Baru

catchment (Fig. 2b) showed a considerably faster recession in
comparison to that of the Blind Beck catchment (Fig. 2a) by a factor
of 6, confirming the more flashy nature of the shallow, tropical
catchment, as noted by previous transfer function studies (Chappell
et al., 1999, 2006, 2012; Walsh et al., 2011).

The identified well-fitting, forward models selected according to
the DBM methodology were then inverted using the RegDer
method and, for comparison, the InvTF method to estimate catch-
ment rainfall from streamflow for the two catchments. The results
of the inversions using the two techniques are shown in Fig. 3 and
the reverse models’ fit in Table 2.

Both approaches applied to the streamflow data for the Blind
Beck catchment produced very similar inferred rainfall time-series
(Fig. 3b). Both approaches produce slightly smoothed rainfall time-
series compared to the observed 15-min sampled rainfall. The
smoothing effect is small when compared with the time constant of
6.4 h for the main component of the forward CT-TF model for the
Blind Beck catchment (Table 1). Both produce some briefly negative
rainfall values during periods of hydrograph recession. Estimated
periods of negative rainfall are likely to be due to the point (i.e.,
highly localised) rainfall measurements not fully characterising the
entire catchment rainfall, so, at times, there is discharge with no
locally measured rainfall that could be attributed to it, and vice-
versa; an effect also described by Young and Sumistawska (2012).

In general, the forward models fit very well so the uncertainty
bounds demonstrated by Monte Carlo runs are very narrow as
illustrated in Fig. 3.

When applied to the Baru data, the RegDer and InvTF approaches
do, however, give simulated or synthetic rainfall time-series with
some different characteristics (Fig. 3a). The InvTF method, while
capturing some of the peaks better (illustrated in Fig. 4 and Table 3)
gives a time-series with very high frequency noise component, of
such a high intensity that it produces momentary negative rainfall
values. These very high frequency components are the result of the
direct differencing involved in this method of inversion, which
severely amplifies high frequency noise in the signal. In contrast,
the RegDer method again produced smoothed inferred rainfall
time-series with dynamics faster than the time constant of 1.14 h
for the faster component of the forward CT-TF model for the Baru
catchment (Table 1). An interesting insight is gained by examining
the inset in Fig. 3b, where the two inferred rainfall series clearly
follow the same trajectory, but the InvTF results include the high
frequency noise, very clearly not related to the observed rainfall.
The observed rainfall is indeed smoother than its InvTF estimate.
These artefacts manifest themselves to a much higher degree in the
fast responding Baru catchment with a different rainfall regime.

This last observation is confirmed by the residuals analysis.
Residuals plots are shown in Fig. 3a and b for Baru and Blind Beck
respectively. It is apparent from the plots how much more high
frequency noise is involved in the InvTF estimates, even for the
Blind Beck data, where both methods perform in a similar manner
(see the residuals variance values in the plots). Fig. 5 shows
comparative plots of the residuals autocorrelation function (RACF)
for both models and both catchments. As expected the RACFs for
Blind Beck are similar, quickly disappearing within their confidence
bounds and it is just the variance level that differentiates the results
for both methods. For Baru the RACFs are quite different, with RACF
for RegDer quickly attenuated and not showing the negative ACF
values characterising the fast switching, noisy InvTF residuals.

Table 3 shows that while the residuals statistics for Blind Beck
show good similarity between the methods, the residuals for Baru
show large discrepancies, with InvTF showing some extreme values
and a completely different distribution shape, as characterised by
the calculated moments: means are similar, variance doubles for
InvTF, and higher moments are radically different and not realistic.
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Fig. 3. Comparison of rainfall simulated using the InvTF and RegDer (NVR optimised) methods for a) Baru and b) Blind Beck. Examination of the inset confirms that the RegDer
method estimates the Baru catchment rainfall better (see Table 2) whilst there is little difference between the methods for Blind Beck rainfall. 99% uncertainty bands generated by

Monte Carlo analysis are shown and can be seen to be very narrow.

The Mean Absolute Error statistics (MAE) show similar relation-
ships to the variance.

Similar effects are shown by the peaks statistics (Bennett et al.,
2013) in Fig. 6. In the figure P, denotes effective rainfall, while Pej, —
inferred effective rainfall. The errors in peak estimates are of similar
magnitude. Inferred in this figure refers to the values of peaks of
inferred rainfall. Baru results show considerable improvement of
these peak error statistics achieved using RegDer approach.

Despite the presence of smoothing effects and/or high frequency
noise components, models simulating observed streamflow from

synthetic rainfall using either method were able to simulate the
observed streamflow equally well, and with a very high efficiency
(Table 4), resulting in virtually indistinguishable model outputs
given the observed rainfall or RegDer or InvTF rainfall as inputs. This
is demonstrated in Fig. 7a and b.

It should be noted that while RegDer results appear to be ‘too
smooth’ and the InvTF results — too ‘noisy’, the balance between the
two is easily achieved using RegDer by balancing the NVR co-
efficients of the inverse model, and will ultimately be up to the
researcher and the aims of modelling exercise. RegDer results can



Table 2

Efficiency (R?) values for the rainfall sequences estimated by inverting the models
selected for Blind Beck and Baru using the InvTF and RegDer methods of inversion.
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R? Blind Beck [2,2,3] Baru [2,2,3]
InvTF 0.512 -0.349
RegDer 0.515 0.433

0.5

-2

be interpreted as sub-sampling, or sacrificing the unobtainable
(due to observation disturbance) temporal resolution. Critically,
there are no such controls with InvTF. Quantifying this balance is a
part of on-going research and is to be addressed in a forthcoming
publication. Applying a smoothing algorithm to InvTF results would
produce a different outcome, as RegDer only applies regularisation
to the minimal number of terms within the bank of filters of

T T
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Fig. 4. Comparison of residuals for a) Baru and b) Blind Beck for the two inversion methods showing the similarities in performance between the methods when used for Blind Beck
(with a minor increase in noise for InvTF) and the differences when used for Baru (with large artefacts in InvTF).
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Table 3
Residuals analysis for Blind Beck and Baru for both inversion methods showing the similarity between the methods for Blind Beck and the differences for Baru.
Mean Mode Var Skew Kurt Max Min Rng MAE
Blind Beck
RegDer —0.0004 -0.0119 0.0549 2.54 20.1 1.71 —1.00 2.71 0.117
InvTF 0.0001 —1.4012 0.0552 1.77 194 1.69 —1.40 3.09 0.118
Baru
RegDer —0.004 0.0001 0.0459 3.51 1123 4.09 -3.25 7.34 0.057
InvTF —0.0036 0 0.1092 -27.17 1549.2 431 —-19.56 239 0.066
0.6F q 0.6F B
0.4r R 0.4r] R

a o 10 20 30 o b) o 10 20 30 40

Fig. 5. Comparative plots of the residuals autocorrelation function (RACF) for InvTF (light grey bars) and RegDer (dark grey bars) and both catchments (Baru in (a) and Blind Beck in
(b)) showing the differences between methods of inversion. In both cases, RegDer quickly attenuates whereas InvTF shows negative ACF values characterising the fast switching,
noisy residuals/artefacts.

Equation (5), as opposed to a cruder tool of smoothing the entire Ockenden et al., 2014) however, the degree of temporal basin
signal. integration of the rainfall signal (and hence response damping) by

The integrating effect of the Blind Beck catchment seen in the the shallow pathways within the tropical catchment (Chappell
damped hydrograph (Fig. 7b) was expected given the presence of et al., 2006) was not expected, but does indicate the role of even
deeper hydrological pathways (Ockenden and Chappell, 2011; shallow water paths in damping intense rainfall. The degree of
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Fig. 6. Comparison of the estimation of peaks for the two methods showing that for Blind Beck, both methods estimate the observed peak quite well with little difference between
them whilst for Baru, the InvTF method hugely underestimates the peak whilst RegDer slightly over-estimates. The metrics PDIFF and PEP were taken from Bennett et al. (2013).
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Table 4
Efficiency (R?) of forward CT-TF models of streamflow based on the observed rainfall
or RegDer or InvTF rainfall as inputs.

Model input Blind Beck R? Baru R?
Observed rain 0.984 0.878
Modelled rain (InvTF) 1.000 0.937
Modelled rain (RegDer) 1.000 0.957

catchment integration indicates that the slight smoothing of the
simulated rainfall time-series (by the RegDer method) has no
impact on its ability to be used in forward CT-TF models to simulate
streamflow. On the basis of their utility for creating synthetic

a)
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rainfall time-series for use in periods lacking observed rainfall, the
new RegDer method and InvTF method of Andrews et al. (2010)
seem of equal value. Perhaps the new RegDer method is margin-
ally better than the InvTF method because of the high frequency
behaviour that can be produced by the InvTF method with some
data sets where high frequency noise is amplified by the derivative
action, for example, the proposed approach is more robust for stiff
systems (those with a wide range of time constants). Further, this
high frequency behaviour has no physical interpretation so might
be considered to fail the final evaluation criterion of the DBM
modelling philosophy (Chappell et al., 2012). These findings from
the first evaluation of the new RegDer method are very positive and
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Fig. 7. Outputs modelled from observed and modelled rainfall sequences for a) Baru and b) Blind Beck showing that the outputs (discharges) are indistinguishable over much of the

figure despite the differing characteristics of the rainfall inputs.
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Table 5
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Data and model output statistics (rainfall). The following abbreviations were used: Var — variance, Kurt — kurtosis, Skew — skewness, IQR — inter-quartile range, Prct —
percentiles. Obs refers to observed rainfall. The Wet prefix in the table rows refers to statistics calculated only for samples with non-zero rainfall (>0 for inferred).

Blind Beck Mean Var Skew Kurt Max Min Range 25% Prct 75% Prct IQR
Obs. all 0.181 0.112 3.154 15.934 2.476 0.003 2.474 0.004 0.233 0.230
Obs. wet 0.181 0.112 3.152 15.925 2.476 0.000 2.476 0.004 0.233 0.230
RegDer 0.182 0.061 1.744 7.451 1.576 —0.156 1.733 0.010 0319 0.309
InvTF 0.181 0.067 2.120 10.591 1.948 —-0.198 2.146 0.008 0311 0.303
Wet RegDer 0.202 0.062 1.658 7.289 1.576 -0.129 1.705 0.012 0.342 0.330
Wet InvTF 0.198 0.069 2.065 10.581 1.948 —0.198 2.146 0.010 0.345 0.335
Baru

Obs. all 0.050 0.081 11.230 179.694 6.853 0.000 6.853 0.000 0.000 0.000
Obs. wet 0.253 0.403 4.383 27.969 6.056 0.000 6.056 0.000 0213 0213
RegDer 0.054 0.054 7.549 76.584 3.674 -0.392 4.066 0.001 0.018 0.017
InvTF 0.054 0.169 29.739 1411.93 23.374 -3.630 27.004 0.001 0.018 0.018
Wet RegDer 0.055 0.042 6.751 60.481 2.763 —0.336 3.099 0.001 0.020 0.019
Wet InvTF 0.051 0.095 18.517 567.320 12.644 —-1.461 27.004 0.001 0.017 0.017

highlight the potential value of this method for generating syn-
thetic rainfall time-series for a range of rainfall regimes and
catchment settings. These preliminary findings have stimulated a
much more extensive programme of evaluation of the RegDer
method against a range of other methods (including the InvTF
method of Andrews et al., 2010) for a much larger set of catchments
with differing rainfall and catchment settings.

A number of basic statistics of the observed and inferred (RegDer
and InvTF) rainfall series are shown in Table 5. It is clear that for the
Blind Beck catchment most statistics for both observed and inferred
series are similar in magnitude (they were not expected to be too
close due to the smoothing effect of both methods), which is
consistent with other results reported above. For Baru however,
there are significant differences between the methods. There is an
indication of mean-smoothing effects of both methods showing in
variance and range. InvTF inferred rainfall shows large changes and
unusual values in range, minima and maxima, as well as higher
order moments being of different order of magnitude from those of
the actual rainfall and RegDer results. This is an indication of the
artefacts of explicit differencing of the streamflow data when using
InvTF. In addition the high skewness of the observed rainfall mea-
surements adds to the argument regarding non-Gaussian distri-
bution, and hence many of the standard model metrics not being
applicable.

5. Conclusions

Robust identification techniques were used to identify
continuous-time transfer function models for two catchments
with contrasting rainfall and flow path regimes. Following the
DBM methodology, the models fitted the data well with a minimal
number of parameters as indicated by a large negative value of the
YIC. The identified (DBM) models for both catchments were of 2"-
order. This is a typical model order for many catchments. The
models were inverted using the new RegDer method and, for
comparison, the InvTF method used by Andrews et al. (2010). Both
methods were able to produce synthetic rainfall time-series that
were then able to simulate almost all of the dynamics in the
streamflow time-series for both catchments (Fig. 4a, b). In com-
parison to the InvTF method of Andrews et al. (2010), the RegDer
method did, however, produce synthetic rainfall containing much
less high frequency noise. This was particularly visible in the
synthetic rainfall of InvTF for the tropical basin with convective
rainfall (Fig. 3a). The smoothing introduced by the RegDer method
is on a much smaller temporal scale than the dominant dynamics
of the catchment indicating that the detailed temporal distribution
of the rainfall series may not be important for the modelling the

observed streamflow (depending on the reasons for modelling) so
long as the series recreates the short-term (i.e., sub-hourly) char-
acteristics responsible for producing stream hydrographs suffi-
ciently well, which is consistent with the findings of Eagleson
(1967) and Obled et al. (1994). These findings are confirmed by
comparative evaluation of several model metrics, including peak
modelling errors and a detailed residuals analysis. It is worth
noting that applying a smoothing algorithm to InvTF results would
produce a different outcome, as RegDer only applies regularisation
to the minimal number of terms within the bank of filters of
Equation (5), as opposed to a cruder tool of smoothing the entire
signal.

Further evaluations of the new RegDer method against InvTF and
other methods need to be undertaken using a more diverse range of
global rainfall and flow-path regimes. This work will include
catchments where the derivation of long-term rainfall time-series
by RegDer would support hydrological, climatological or ecolog-
ical studies requiring such long time-series of synthesised rainfall
(Ormerod and Durance, 2009).

Software and data used to produce the results in this paper are
available upon request from the corresponding author.
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