
First Dynamic Model of Dissolved Organic Carbon Derived Directly
from High-Frequency Observations through Contiguous Storms
Timothy D. Jones, Nick A. Chappell,* and Wlodek Tych

Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.

*S Supporting Information

ABSTRACT: The first dynamic model of dissolved organic carbon
(DOC) export in streams derived directly from high frequency
(subhourly) observations sampled at a regular interval through
contiguous storms is presented. The optimal model, identified using
the recently developed RIVC algorithm, captured the rapid dynamics
of DOC load from 15 min monitored rainfall with high simulation
efficiencies and constrained uncertainty with a second-order (two-
pathway) structure. Most of the DOC export in the four headwater
basins studied was associated with the faster hydrometric pathway
(also modeled in parallel), and was soon exhausted in the slower
pathway. A delay in the DOC mobilization became apparent as the
ambient temperatures increased. These features of the component
pathways were quantified in the dynamic response characteristics
(DRCs) identified by RIVC. The model and associated DRCs are
intended as a foundation for a better understanding of storm-related
DOC dynamics and predictability, given the increasing availability of
subhourly DOC concentration data.

■ INTRODUCTION

Over the past three decades, surface waters in parts of North
America and Europe have shown an increasing trend in
dissolved organic carbon (DOC) concentration.1 This has
raised concerns within the water industry because of its impact
on the formation of disinfection byproducts during raw water
clarification.2,3 As a consequence, some water utilities are now
monitoring DOC concentrations within raw-water treatment
works at a high frequency with automated spectrophotom-
eters.4 Furthermore, many of the factors (e.g., pH) that may be
controlling the DOC trends1 change rapidly over short periods,
demanding high frequency observations to develop under-
standing of processes. In addition, some other processes may be
sensitive to rapid changes in DOC concentration: notably, the
acid−base chemistry of surface waters,1,5 in-channel processing
of nutrients such as nitrogen,6 the release of organic
micropollutants to streams,7 and the bioavailability of metals
in streams.8 As a consequence, understanding subdaily
dynamics in DOC concentration (DOCCONC) and load
(DOCLOAD) in headwater streams is of concern to water

resource engineers, aquatic ecologists, and water quality
modelers.
Few regularly sampled records of DOCCONC have been

collected on a subdaily basis from either in situ monitoring or
water sampling of natural streams and published. Where these
data are available for headwater catchments dominated by
mineral soils, DOCCONC and DOCLOAD change more through
individual storm events rather than over seasonal time
scales.9,10 These storm-related changes occur over minutes to
hours (e.g., Inamdar et al.11) and so demand subhourly
monitoring to capture. This study addresses DOC dynamics
within four microbasins (0.69−1.21 km2) near to Llyn Brianne
reservoir in upland Wales, UK.
When attempting to measure storm-related DOCLOAD

dynamics, under-sampling distorts the true DOCLOAD signal
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through a phenomena known as temporal aliasing.12 Any
models based on under-sampled observations would have
distorted (i.e., incorrect) parameter estimates, and the form of
the model structure may be incorrectly defined or even
unidentifiable when obtained directly from the observations.
These effects are illustrated by Littlewood and Croke13 for
catchment models derived directly from rainfall and streamflow
observations that are progressively under-sampled during
numerical experiments. The need for a sufficient sampling
rate to avoid these aliasing artifacts applies to both the
development of data-based models and the validation of
physics-based models. To avoid aliasing effects in hydrometric
and water quality models, the minimum sampling rate should
be determined from high-frequency data. These may be either
existing observations or pilot data for the water quality variable
of interest. Using these data, the minimum sampling rate can be
estimated from the Nyquist rate (based on the Nyquist−
Shannon sampling theorem12) or, preferably for noisy environ-
mental observations, with the use of dynamic modeling.
Young14 has demonstrated that one-sixth of the time

constant (or TC/6) of a dynamic transfer function model15

between rainfall and a catchment output variable (e.g.,
DOCLOAD) is a robust measure of the minimum sampling
rate required. For the study basins, Jones and Chappell16

demonstrated that the minimum sampling rate (TC/6)
required to capture dynamics in rainfall to hydrogen ion
(H+) load was 23 min. Given the possible association of DOC
with H+,17,10 a 15 min sampling rate was chosen for
observations of DOCCONC and DOCLOAD at these sites to
avoid the effects of temporal aliasing. Given recent develop-
ments of field sensors for DOC measurement, notably field
spectrophotometers covering the ultraviolet to visible (UV−
vis) spectrum, such sampling rates can be maintained
continuously. New stream monitoring studies using UV−vis
sensors have mostly used the instrument known as a
“spectrolyser” (scan Messtechnik GmbH, Vienna). These
studies have used sampling rates of every 5 min,18 20 min4

or 30 min9,10,19,20 for periods ranging from 3.5 months18 to 24
months.9

In recent years, there has been much concern over the use of
catchment hydrochemistry models that produce highly
uncertain results (and so, an inability to make realistic
interpretations) by virtue of an overly complex model
structure.21 As a response to the need to constrain model
uncertainty arising from structural complexity, there is
considerable merit in following the principles of parsimony,
that is, finding the simplest model able to simulate the observed
dynamics in the variable(s) of interest. Dynamic models that
are built directly from the information contained within time-
series observations (i.e., data-based models without predeter-
mined model structures) have the greatest potential to have
parsimonious structures. Only a few dynamic models for the
simulation of stream DOCCONC (or DOCLOAD) over time have
been developed, notably the dynamic conceptual models of
Hornberger et al.,22 Taugbøl et al.,23 Boyer et al.,24,25 Futter et
al.,26,27 and Ågren et al.28 These models differ from steady-state
models of DOC (e.g., Grieve,29 and Liu et al.30) in that
dynamic models are able to simulate the effects of initial
conditions or “memory effects” (i.e., effects of past values of
DOC or associated mobilization processes or transport
variables) as well as lags to response and exhaustion of stores.
Although some of these dynamic models may be described as
parsimonious, none have utilized regularly sampled, subdaily

data from contiguous storm events or have had their structure
(and associated parameters) derived directly from the dynamics
contained within observed, subdaily time series of DOCLOAD
(i.e., data-based models).
This study has aimed to develop a dynamic, data-based

model that is derived from and can explain most of the short-
term changes observable within high quality DOCLOAD
observations (i.e., free from temporal aliasing, artifacts from
sensor fouling, and calibrated to laboratory values) collected
from a series of adjacent headwater streams. The specific
objectives used to realize the aim were:

1. To develop the first dynamic model of stream DOC
export derived directly from 15 min sampled observa-
tions continuously collected through contiguous rain-
storms.

2. To develop understanding of the hydrological controls
on rapid stream DOC dynamics through comparison of
the models of four adjacent microbasins and with parallel
analysis of rainfall to streamflow response.

■ EXPERIMENTAL SECTION
To explore the hydrological control on DOCLOAD dynamics
within streams of microcatchments draining upland soils
(typical of humid temperate climates), four streams in close
proximity were chosen for intensive monitoring (SI Figure S1).
These streams drain into the Llyn Brianne water supply
reservoir (52°8′7″ N 3°44′50″ W) on the upper reaches of the
River Towy in the Cambrian Mountains, UK. Hydrological
variables of rainfall and streamflow were measured using
raingauges and flumes within the four basins (Supporting
Information (SI) Figure S1); the characteristics of these basins
are given in SI Table S1, with further details available in Jones
and Chappell.16

A spectrolyser was installed at each of four streamwater
quality stations (SI Figure S1). Details of the essential
infrastructure designed for each spectrolyser are given in
Supporting Information S1. Details of newly developed
cleaning protocols required to minimize artifacts31,32 within
spectrolyser observations at Brianne are given in Supporting
Information S2. All 256 spectral absorbance values monitored
by each spectrolyser were data-logged every 15 min. Following
transfer to a computer a proprietary algorithm (“RIVCOL”:
scan Messtechnik GmbH) was used to derive an initial estimate
of DOCCONC from a fixed set of these spectra. This initial
estimate was then calibrated to absolute values of DOCCONC for
each time series of 16,141 values using 91 water samples
collected between 11 Jan and 1 Oct 2013 from the Brianne
streams covering low to high flows. These samples were
analyzed (after filtering through 0.45 μm ash-less filter papers)
by thermal oxidation and NDIR detector using a Shimadzu
TOC-Vcph Analyzer (NPOC) at the Centralised Analytical
Chemistry Group Laboratory of the Centre for Ecology and
Hydrology (CEH). They ranged from 0.1 to 18 mg/L
DOCCONC and so covered the 0.33−10.28 mg/L range of
calibrated DOCCONC values derived from the spectrolyser
spectra monitored at Brianne. The hydrometric and DOC
observations selected for the exploratory modeling covered a
169 day period (8 Jan to 25 Jun 2013).
The essential first step in building data-based models (i.e.,

models in which the structure and parameters are derived
directly from observations) is visualization of the observations
to identify the basic class of model that may capture the
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observed dynamic relationships.33 Given that Jones and
Chappell16 identified a strong hydrological control on H+

load for the same streams, the DOCCONC and DOCLOAD

were first visualized with the rainfall and streamflow. Because
the local relationship between rainfall and H+ load involved
inertia (i.e., dynamic delays and storage), it was considered
likely that an algorithm capable of identifying data-based
models that incorporate inertia would be needed. The RIVC
algorithm (refined instrumental variable continuous-time Box−
Jenkins identification algorithm) of Young34 is one such
procedure. Technically, RIVC implements an iterative
instrumental variable (IV) method for estimation of general
transfer functions that capture the dynamic relationship
between input (e.g., rainfall) and output (e.g., DOCLOAD)

variables using rational polynomial expressions in operator s (in
continuous time, e.g., eq 3), which directly translate to
differential equations driven by the input variable (such as eq
2).34 IVs are statistical tools, in this case current estimates of
model output, that allow for unbiased estimation of the model
parameters (e.g., α1, α2, β0, β1, and τ in eq 3). These IVs along
with inputs and measured outputs are used within normal
equations (originally introduced by Gauss) to obtain the
parameter estimates and their covariance matrices. RIVC is part
of the CAPTAIN Toolbox for MATLAB,35 and greater
explanation for the choice of RIVC to identify new models of
DOCLOAD and the associated parameters in the form of
dynamic response characteristics (DRCs)36 is given in
Supporting Information S3.

Figure 1. Time series of mean rainfall from the LI3 and LI6 raingauges (a), alongside DOCCONC (at a 15 min monitoring rate) following quality
assurance and local calibration of in situ UV−vis spectrophotometer measurements at water quality stations in grassland LI6 (b), grassland LI7 (c),
forest LI3 (d), and forest LI8 (e), all near the Llyn Brianne reservoir. The first half of the data (Julian day from 1/1/2012 of 373.5208 to 460.9900)
covers 8 Jan to 4 April 2013 (8398 values per stream), and the second half, 5 Apr to 25 Jun 2013 (day 461.0000 to 541.6458; 7743 values).

Figure 2. Full time series (8 Jan to 25 June 2013) of DOC concentration alongside streamflow (scaled/40) at LI3; similar time series for the other
catchments are shown in SI Figures S2, S5, S8, and S11.
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Several studies have indicated that seasonal changes in air
temperature may affect DOC production within soil water.37,38

As a result, the study separately applied the RIVC routine to
contiguous storms over the 5 to 18 Feb period and to
contiguous storms over the 26 May to 5 June period that had
different temperatures as well as different hydrometric
characteristics. Applying the model identification to two
separate periods also allowed conditional validation39 of the
model structures identified.

■ RESULTS AND DISCUSSION

Local DOC Calibration of the RIVCOL Algorithm for
the Brianne Streams. Ninety-one water samples were
analyzed in the laboratory to derive a local calibration of the
spectrolyser data. This calibration relates an initial estimate of
concentration derived from “cleaned spectra” (see Supporting
Information S2) using the proprietary RIVCOL algorithm
(DOCRIVCOL) to absolute values of DOCCONC (mg/L)
measured in the laboratory and is shown in eq 1:

= ×
+

=RDOC (DOC 0.5374)
0.0045

0.99CONC RIVCOL
2

(1)

For the Brianne streams, RIVCOL therefore overestimated the
DOCCONC by a factor of 1.8−1.9 and demonstrates the
importance of local calibration. Calibrating in the same way,
Joeng et al.18 found that RIVCOL produced stream DOC
estimates for the Haean Basin (South Korea) that were a factor
of 0.3 (for low true DOC values) to 1.3 (high true DOC
values) those determined in the laboratory. In contrast,
Jollymore et al.9 found that RIVCOL produced DOC estimates
for streams in a headwater catchment in British Columbia
(Canada) that were a factor of 0.95 (high true DOC values) to
1.8 (low true DOC values) of those determined in the
laboratory. The resultant quality assured and calibrated
DOCCONC for the 8 Jan to 25 June period is shown in Figure
1. These 15 min sampled data cover the end of a relatively cold
period between 8 Jan to 4 Apr with mean stream temperatures
at LI6 of 3.4 °C and a subsequent period 5 Apr to 25 June at
8.71 °C.

Visualization of DOCCONC, DOCLOAD, Rainfall and
Streamflow. Marked peaks in DOCCONC are associated with
the streamflow hydrographs that follow the peaks in rainfall
(Figure 1 and Figure 2). This storm-related change in
DOCCONC often occurs over short periods of less than 1 day
(Figure 2). This underlines the importance of a subdaily
monitoring regime for DOCCONC. The rate of increase in
DOCCONC in response to a rain storm is typically comparable
to those of the streamflow response, although the recession of
DOCCONC is sometimes slower than the streamflow recession
(Figure 2).
Over the 169 day winter-to-spring period, the range of the

locally calibrated DOCCONC data for the LI6 stream was 0.52−
6.53 mg/L, whereas at LI7, it was 0.33−7.80 mg/L; LI3, 1.04−
8.28 mg/L; and LI8, 0.47−10.28 mg/L, respectively (Figure 1).
The similar ranges in DOC may be expected from the similar
proportions of each basin covered by peat and peaty-gley soils
(FAO-UNESCO Histosol and Humid Gleysol) versus podzolic
soils (SI Table S1 and SI Figure S1). The slightly higher
maxima for storms within the forested basins (Figure 1de) may
be related to the greater release of DOC from drained conifer
plantation soils relative to adjacent grassland soils.40 The very
large streamflow peak during day 392 (Figure 2) is associated
with a rare snowmelt event, but this period was not explored
further because of a 3 day gap in the DOC record at this time.
Plotting 15 min sampled DOCCONC against streamflow

produced distinct hysteresis loops for each storm (SI Figures
S14−S17). Although each loop shows increasing DOCCONC
with increasing streamflow, as observed by Hinton et al.,41

Dawson et al.,42 and Strohmeier et al.,10 differences in the
DOCCONC to streamflow relation between the rising and falling
stage of each hydrograph produces a pronounced loop that has
a different shape between different storms. This demonstrates
that DOCCONC responses are out of phase with the streamflow,
necessitating the use of dynamic data-based models to capture
the effects of storage. A similar complexity was observed in the
relationship between rainfall and streamflow, likewise indicating
that the rainfall−streamflow relation sampled at a high
frequency is not a purely instantaneous response, but one
involving a dynamic internal state. Given that dissolved solutes,

Table 1. Optimal CT-TF Models of Rainfall-DOCLOAD and Rainfall to Streamflow (Q) for both the 5th to 18th February 2013
Period and the 26th May to 5th June 2013 Perioda

site DOCLOAD/Q modela YIC Rt
2 TCfast (h) TCslow (h) fast % slow % SSG

LI3 Feb load [2 2 3] −5.60 0.904 4.96 ± 0.10 45 ± 12 56.5 ± 11 43.5 ± 11 1.595
Feb Q [2 2 2] −6.65 0.904 4.99 ± 0.94 56 ± 58 24.5 ± 5.6 75.5 ± 5.6 0.703
May load [2 2 6] −9.54 0.977 5.08 ± 0.03 87 ± 5.4 37.0 ± 2.4 62.0 ± 2.4 1.816
May Q [2 2 2] −9.57 0.967 5.98 ± 0.01 175 ± 3.6 12.2 ± 2.2 87.8 ± 2.2 0.814

LI6 Feb load [2 2 1] −4.20 0.838 3.45 ± 0.11 32 ± 15 65.8 ± 15 34.2 ± 15 1.378
Feb Q [2 2 0] −5.83 0.857 3.67 ± 0.65 50 ± 72 35.8 ± 5 64.2 ± 5 0.665
May load [2 2 9] −8.50 0.953 2.29 ± 0.02 89 ± 2 44.0 ± 2.3 56.0 ± 2.3 1.557
May Q [2 2 5] −9.92 0.961 2.72 ± 0.12 263 ± 270 10.9 ± 29 89.1 ± 29 1.050

LI7 Feb load [2 2 1] −3.76 0.838 4.76 ± 0.15 41 ± 29 68.8 ± 14 31.2 ± 14 1.170
Feb Q [2 2 0] −5.82 0.857 4.73 ± 0.21 61 ± 43 31.5 ± 32 68.5 ± 32 0.630
May load [2 2 8] −8.65 0.960 3.43 ± 0.02 44 ± 2 37.9 ± 24 62.1 ± 24 1.061
May Q [2 2 0] −9.32 0.956 11.03 ± 0.48 373 ± 290 12.0 ± 31 88.0 ± 31 1.120

LI8 Feb load [2 2 2] −5.27 0.870 5.09 ± 0.14 46 ± 21 47.4 ± 14 52.6 ± 14 2.155
Feb Q [2 2 2] −6.35 0.883 3.48 ± 0.16 63 ± 120 16.3 ± 32 83.7 ± 32 1.407
May load [2 2 8] −8.52 0.972 10.98 ± 0.13 372 ± 94 34.9 ± 6.6 65.1 ± 6.6 4.315
May Q [2 2 1] −9.46 0.949 7.77 ± 0.35 441 ± 120 6.5 ± 27 93.5 ± 27 2.589

aModel structurea is given as [denominators, numerators, pure time delays], and parameter estimates are given in SI Table S10. All TC (in hours)
and pathway percentages are shown with uncertainty from 1000 Monte Carlo realizations.
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such as DOC, move along the subsurface (and surface)
hydrological pathways associated with the rainfall−streamflow
response,43,44 it would not be surprising if the relation between
rainfall and stream DOCCONC or DOCLOAD also exhibits short-
term storage effects (rather than a solely instantaneous
response) and thereby require dynamic data-based modeling.
Comparison of DOCCONC with DOCLOAD time series (SI

Figures S3, S6, S9, and S12) shows that the DOC export is
often more flashy or rapidly exhausted when compared with
concentration within the stream (e.g., the simple event on day
410 in SI Figure S3). Consequently, analysis of DOC export
requires a greater monitoring frequency than even the rapid
dynamics in the concentration would suggest. Examination of
the timing of the export of DOC mass (kg/15 min) relative to
the export of the water mass or volume, that is, ML/15 min (SI
Figures S4, S7, S10 and S13), perhaps allows the most robust
visual interpretation, given that both are fluxes (a concentration
is a “state” not a “flux”, and so comparison with waterflow is
more difficult to interpret directly). The initial recessions in the
load and streamflow time series seem broadly comparable, but
the later recessions are slower for the streamflow in comparison
with the DOCLOAD (e.g., SI Figure S4). Given that streamflow
recessions of several hours to a few days are often associated
with drainage from the subsoil or underlying regolith,16 the
more rapid later recession in DOCLOAD may indicate that much
less DOC mass is transported by these deeper pathways and is
soon exhausted. Relative to the streamflow, the peaks in
DOCLOAD within storm periods are larger within the warmer
spring period (e.g., days 510 to 540) compared with the cooler
winter period (e.g., days 395 to 425; e.g., SI Figure S4).
Identified Dynamic Models of DOCLOAD in Relation to

Hydrological Response. A key objective of the data-based
modeling was to identify features observed in the data
visualization within model parameters and DRCs. Given that
the peaks in DOCLOAD and DOCCONC seem to be associated
with those in streamflow (e.g., Figure 2), models capable of
simulating streamflow response may have structures and input
variables (e.g., rainfall) suitable for simulating the dominant

mode of behavior of stream DOCLOAD when observed at the
same high frequency.
Table 1 shows that application of the RIVC algorithm to the

15 min DOCLOAD and streamflow data (output variables) from
the 15 min rainfall data (input variable) produced optimal
continuous-time transfer function (CT-TF) models with high
simulation efficiencies. Within this model development study,
the procedures for identifying the optimal model structure
using statistical measures of simulation efficiency and
parsimony45,46 are given in SI S4. The model structures with
the highest 20 simulation efficiencies when the algorithm was
applied to the DOCLOAD values are shown in SI Tables S2−S9.
Table 1, Figure 3, and SI Figure S19 show that the optimal

dynamic models of stream DOCLOAD given an input of rainfall
are able to explain 84−97% of the observed dynamics through
contiguous storms. This demonstrates that when the
components of DOCLOAD (i.e., streamflow and DOCCONC)
are adequately sampled (here continuously monitored in situ
every 15 min), most of its dynamics through a sequence of
storms can be simulated from hydrometric (i.e., rainfall) data
alone.
The RIVC algorithm, combined with model selection criteria,

indicates that the rainfall to stream DOCLOAD dynamics are best
characterized by a second-order [2 2 τ] CT-TF model structure
(Table 1). The form of this model can be expressed in ordinary
differential equation terms (ignoring initial conditions):

α α

β τ β τ

+ +

= − + −

L t
t

L t
t

L t

r t
t

r t

d ( )
d

d ( )
d

( )

d ( )
d

( )

2
DOC

2 1
DOC

2 DOC

0 1 (2)

where LDOC is the stream DOCLOAD (kg/15 min), r is the
rainfall average from the LI3 and LI6 raingauges (mm/15 min),
τ is the pure time delay between rainfall and an initial
DOCLOAD response (number of 15 min periods), α1 and α2 are
the parameters capturing the rate of DOC exhaustion (/15
min), β0 and β1 the parameters capturing the magnitude of
DOC production or gain (kg 15 min/mm), and t is time in 15

Figure 3. Rainfall (a) and simulated DOC load (black line) and observed DOC load (red line) for optimal second-order CT-TF models of (b) LI3
stream, (c) LI6 stream, (d) LI7 stream, and (e) LI8 stream for the contiguous storms over the 5−18 February 2013 period. Comparable results for
the period 26 May to 5 June 2013 are shown in SI Figure S19.

Environmental Science & Technology Article

dx.doi.org/10.1021/es503506m | Environ. Sci. Technol. 2014, 48, 13289−1329713293



min periods. The same model can be expressed as a second-
order transfer function in continuous-time (CT-TF):

β β
α α

=
+

+ +
∼τ−

⎛
⎝⎜

⎞
⎠⎟L

s

s s
r S

t
e ;

d
d

s
DOC

0 1
2

1 2 (3)

where s is the Laplace operator. To permit physical
interpretation, this second-order transfer function model of
DOCLOAD can be decomposed by partial fraction expansion15

(using the “Residue” function in Matlab) into two parallel, first-
order transfer functions:

β
α

β
α

=
−

+
−

τ τ− −L
s

r
s

re es s
DOC

f

f

s

s (4)

where αf and αs are the parameters capturing the rate of DOC
exhaustion of the fast and slow components that comprise the
total DOC load, respectively (/15 min), and βf and βs are the
parameters capturing the magnitude of DOC production or
gain of the fast and slow components, respectively (kg 15 min/
mm). As an illustration, eq 5 shows values of parameters given
in eq 4 for the model of stream DOCLOAD for the LI3 basin
during the selected February period (and with three pure time
delays, i.e., a [2 2 3] model):

=
+

+
+

− Δ − ΔL
s
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s
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0.0454

0.0504
e
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0.00546
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DOC
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3
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3

(5)

where Δt is the time-step in the observations (here, 15 min).
These values and those from all models are shown in SI Table
S10. The observation that all four streams and both periods
modeled independently exhibit the same purely linear, second-
order model structure (Table 1) provides some conditional
validation39 of the DOC model robustness at this locality.
Interpretation of the High-Frequency DOCLOAD Dy-

namics Observed with the Aid of Modeling and
Comparison with Hydrometric Dynamics. A purely linear,
second-order CT-TF model that can be decomposed into two
parallel, first-order CT-TFs suggests that the stream DOCLOAD
response through a period of contiguous storms comprises two
parallel catchment stores that deliver DOC mass to streams
with differing rates of production (gain) and exhaustion
(recession) after a rainfall stimulus. For the same basins and
periods, RIVC indicates that the rainfall to streamflow response
is similarly characterized by a second-order model structure
(Table 1). This might suggest that the stream DOCLOAD
dynamics result from the same two water pathways responsible
for the streamflow response. Consequently, comparison of the
delivery behavior of these two stores for DOC mass with that of
the hydrometric response may reveal additional DOC-related
characteristics of these stores.
Physical interpretation of the behavior of the model stores is

always made after first calculating the DRCs16,36 of component
transfer functions from parameters αf, αs, βf, βs and τ given in
eq 4. These DRCs include the time constant (TC) for each
component, store, or pathway, which for the fast path is given
as

α
= Δt

TCfast
f (6)

A further DRC is the steady-state gain (SSG) of all
components combined and when defined for a second-order
CT-TF model is the quotient of the β1 and α2 parameters

because the other parameters (α1 and β0 in eq 3) involve
derivatives or s-operators and so are zero at steady-state.

β
α

=SSG 1

2 (7)

For the DOCLOAD models presented, the steady-state gain (kg/
mm) is the time-integrated DOC mass simulated from the
observed time-integrated rainfall and can be used to calculate
the proportion of the DOC mass response from each store. For
example, the proportion of the DOC mass response from the
most rapidly draining of two parallel stores (Fast %) is given as

=
+

⎛
⎝⎜

⎞
⎠⎟Fast% 100

SSG
SSG SSG

1

1 2 (8)

where SSG1 and SSG2 are the steady state gains of the fast and
slow first-order stores (for a CT-TF model), respectively. Given
the linearity of the DOC system through periods of contiguous
storms, the time constant is a measure of how quickly (in
periods of the data time-step or converted to hours) each DOC
store is exhausted to 37% of the peak in DOC mass exported.
The DRCs of the rainfall-streamflow system can be interpreted
in the same way as the rainfall-DOC system, but for the
components of the hydrometric response. For example, SSG is
the simulated runoff coefficient if streamflow is presented as a
discharge per unit basin area.
In comparison with the hydrometric response, considerably

more DOCLOAD is exported by the fast response component
(Fast %: eq 8) by a factor of 1.8−5.4 within both periods
modeled (Table 1). Given that the fast hydrometric response is
often associated with shallow water pathways, including those
interpreted at the study sites16 and measured directly elsewhere
in the Cambrian Mountains,47 this result (uniquely obtained
directly from the dynamics in the observations) would suggest
that shallow water pathways have much greater releases of
DOC than deeper water pathways. This finding is consistent
with the observation that DOCCONC within mobile pore waters
at Brianne is greater in the near-surface strata of the podzolic
soils compared with deeper strata.48 In addition, many
conceptual models of DOC transport to streams (e.g., Boyer
et al.,25 Futter et al.26) need to route a significant proportion of
DOC via a shallow water path to simulate stream DOCCONC
consistent with observations. Examining the time constants
shows that the rate of exhaustion of the fast component of the
DOCLOAD (eq 6) is for the most part comparable to the rate of
drainage of the fast water flow. In some contrast, the rate of
exhaustion of the delayed component of the DOCLOAD (TCslow
in Table 1) is much faster than the rate of drainage of the
delayed water-flow component by a factor of 1.4−2.2. These
model-derived findings are consistent with the earlier data
visualization and with the smaller contribution from the delayed
DOC pathway (Slow % in Table 1). An “exhaustion effect”
following a storm peak in stream DOCCONC or DOCLOAD has
been observed by Worrall et al.,49 Hood et al.,50 and Morel et
al.51 and in H+ load within the same Brianne streams.16 The
exhaustion effect at Brianne may imply the rate of DOC release
into mobile water within the near-surface strata is limited so
that continued drainage of mobile water into the subsoil (and
thence, to the stream via the deeper pathway) becomes
progressively diluted in DOCCONC following a storm peak.
During the May simulation period, the proportion of DOC

mass delivered by the fast component reduced by a factor of
0.55−0.74 in the four streams compared with the February
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period (Table 1). This is consistent with the smaller proportion
of the hydrometric response from fast, shallow pathways at all
sites during the drier May period (Figure 1) and, hence,
reduced DOC flushing from shallow pathways. A shift in the
timing of the DOC delivery between the February and May
periods is clear within the pure time delay between a rainfall
stimulus and initial response in the simulated DOCLOAD (Table
1). The pure time delay between the February and May periods
systematically increases for all four basins by up to 120 min
(e.g., from a [2 2 1] to [2 2 9] model of the LI6 DOC export),
whereas streamflow does not show a consistent shift between
the two periods. The initial wetting of very dry organic surface
strata can result in “new water” bypassing the matrix in
macropores, thereby delivering water to streams having had
little interaction with the solute-rich matrix waters.52 This
would delay the first arrival of DOC-rich waters in the streams.
Equally, lateral flow generated in saturated wedges at the base
of near-surface organic strata of podzolic soils, as noted by
Chappell et al.47 elsewhere in the Cambrian Mountains, will
take longer to develop during drier antecedent conditions. This
could lead to a delay in the first delivery of DOC-rich water
from O horizons of podzols relative to water displaced from
deeper strata (e.g., B/C or C horizons) containing less
DOC.43,47 The increase in SSG of the whole DOCLOAD
response between the January and May periods by an average
factor of 1.34 may be explained by the increase in the SSG of
the rainfall-streamflow system by a factor of 1.59 (Table 1).
The TCs for the fast components of the DOCLOAD response

ranged from 2.29 ± 0.02 to 10.98 ± 0.13 h, whereas those for
the fast hydrometric response ranged from 2.72 ± 0.12 to 11.03
± 5.37 h (Table 1). To adequately sample the recessions that
the TCfast values characterize requires the observation of at least
six evenly spaced temporal samples within the period of the
TCfast.

14 Thus, for the fastest responses observed across these
four headwater basins, the streamflow (and associated rainfall)
must be recorded at least every 0.45 h or 27 min (i.e., 2.72/6
h), and DOCLOAD (and associated rainfall, DOCCONC and
streamflow) must be recorded at least every 0.38 h or 23 min
(i.e., 2.29/6 h). The effect on TCfast of sampling DOCLOAD less
frequently than the minimum 23 min is shown in SI Figure S20
for LI3 data in the February period. All interpretations
presented within this study were based on variables recorded
every 15 min and so avoided any aliasing effect on TCfast.
Observational data sets associated with previous DOC
modeling studies22−28 do not have this sustained intensity of
DOC monitoring. As a result, these studies may not have
observations sufficient to prevent temporal aliasing in the
DOCLOAD dynamics and resultant model parameters. Con-
sequently, the data sets used in these previous studies may be
insufficiently detailed to allow conditional validation of the
dynamics simulated or model parameters estimated. Prevention
of temporal aliasing needs to be a core priority within all future
DOC modeling studies.
In summary, this study is the first to derive a dynamic model

of stream DOCLOAD directly from regular subdaily observations
through contiguous storm events. The information contained
within the 15 min observations indicates that the rainfall-to-
DOC export system in the selected upland headwaters
consisted of two dominant components, each with purely
linear dynamics. Given that independent application of the
RIVC algorithm to the four nearby basins and two separate
periods produce the same optimal model structure, this
structure would seem to be relatively robust at this locality.

This is further reinforced with the finding that the optimal
model structure is identical to that of the rainfall-to-streamflow
model (and rainfall-to-H+ load16) determined independently.
This contrasts with previous approaches to modeling stream
DOC that have forced DOC transport to follow one, two, or
more pathways fixed prior to the modeling. The similarity of
the model structures, combined with high simulation
efficiencies and relatively low parametric uncertainties, has
permitted preliminary physical interpretation of dynamic
response characteristics identified by the RIVC algorithm.
Through periods of contiguous storms, the high frequency

dynamics in rainfall are as important to simulating DOCLOAD
within streams as they are to simulating streamflow itself,
demonstrating the strong hydrological control on the export of
DOC from headwaters. With reference to the parallel
hydrometric modeling, several findings could be extracted
from the observed dynamics in DOCLOAD. First, most of the
DOC export was associated with the faster hydrometric
pathway, and that within the slower pathway is soon exhausted.
Second, as ambient temperatures increase between winter and
spring, the delay between a rainfall input and DOC
mobilization increases significantly, potentially indicating a
disconnect between the initial hydrometric response and DOC
transport. Third, exploration of the dynamics in the DOCLOAD
using RIVC has demonstrated that the 15 min monitoring
utilized in these headwaters met the Young14 criterion to avoid
temporal aliasing of the fundamental, storm-related dynamics.
This implies that future studies that aim to collect DOCCONC
and DOCLOAD observations in headwater streams for
subsequent modeling may need to consider the use of similarly
high monitoring intensities.
The simulated dynamics identified by the approach utilizing

the RIVC algorithm that include estimates of delays to initial
response, relative importance of different DOC sources and
hydrological pathways, and rates of exhaustion of mobile DOC
stores are considered preliminary interpretations. This is to
encourage others to obtain independent observations of the
dynamics of potential component pathways (e.g., lateral flow
within an O-horizon47) to support or reject the components
identified from the whole-basin response.16 The approach also
indicates the potential for extending single simulations across
seasons by including other variables, such as temperature53,54 or
measures of microbial activity in addition to rainfall within
multiple-input, single-output (MISO) models of DOC export.
Adding additional variables may allow the model to explain
more of the dynamics in DOCLOAD than possible with the
model presented in eq 3. Furthermore, in situ UV−vis
spectrophotometers such as the “spectrolyser” record a wide
range of absorbance values for which certain wavelengths may
be associated with the properties of the carbon being
transported in streams.55 MISO modeling of the specific
spectral wavelengths combined with stream or climatic variables
may allow deeper understanding of the dynamics of DOC
export during storms and directly address the needs of the
water industry56 in regions with a rising DOC trend.
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