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Abstract The ability to simulate characteristics of the diurnal cycle of rainfall occurrence, and its evolution 
over the seasons is important to the forecasting of hydrological impacts resulting from land-use and climate 
changes within the humid tropics. This stochastic modelling study uses a generalized linear model (GLM) 
solution to second-order Markov chain models, as these discrete models are better at describing binary 
occurrence processes on an hourly time-scale than continuous-time approaches such as stochastic state-space 
models. We show that transition probabilities derived by the Markov chain method need to be time-varying 
rather than stationary to simulate the evolution of the diurnal cycle of rainfall occurrence over a Southeast 
Asian monsoon sequence. The conceptual and pragmatic links between discrete diurnal processes and 
continuous processes occurring over seasonal periods are thereby simulated within the same model. 
Key words  generalized linear model (GLM); hourly rainfall; Markov chain; Monte Carlo simulation;  
time-varying transition probabilities; tropical climate; weather generator 

Simulation de l’occurrence de pluie horaire au sein de la forêt équatoriale, Ile de Bornéo 
Résumé L’aptitude à simuler les caractéristiques du cycle diurne d’occurrence des pluies et de son évolution 
au fil des saisons est importante pour la prévision des impacts hydrologiques de changements d’occupation 
du sol et de climat en zones tropicales humides. Cette étude de modélisation stochastique utilise une 
résolution de modèle linéaire généralisé (GLM) de modèles de type chaîne de Markov de second ordre, ces 
modèles discrets étant meilleurs pour décrire des processus d’occurrence binaire à pas de temps horaire que 
les approches continues telles que les modèles d’état stochastiques. Nous montrons que les probabilités de 
transition dérivées par la méthode de la chaîne de Markov doivent être évolutives au fil du temps plutôt que 
stationnaires pour simuler l’évolution du cycle diurne d’occurrence des pluies pendant une séquence de 
mousson en Asie du sud-est. Les liens conceptuel et pragmatique entre les processus diurnes discrets et les 
processus continus intervenant lors des périodes saisonnières sont simulés au sein du même modèle. 
Mots clefs  modèle linéaire généralisé (GLM); pluie horaire; chaîne de Markov; simulation de Monte-Carlo;  
probabilités de transition évolutives; climat tropical; générateur météorologique 
 
 
INTRODUCTION 
Many studies have simulated the statistical properties of daily rainfall data (e.g. Wilks & Wilby, 
1999; Leander et al., 2005). Very few studies however, have simulated hourly rainfall data (Katz 
& Parlange, 1995). Such models would have particular benefits for hydrological research within 
tropical rainforest regions where streamflow and sediment sources are very sensitive to sub-daily 
rainfall characteristics (Chappell et al., 2001, 2004a, 2006; Bonell, 2004; Bidin & Chappell, 2006). 
Markov chains are the most common method of modelling the statistical properties of daily 
rainfall occurrence, i.e. duration of wet and dry days (Stern & Coe, 1984). Further, the weighted 
least squares (WLS) technique involved with Markov chain procedures is normally undertaken 
assuming that the transition probabilities are stationary. However, Klugman & Klugman (1981), 
Gregory et al. (1993), and Katz & Parlange (1995) have shown that this assumption often leads to 
underestimation of the variance in the modelled rainfall dynamics, particularly where hourly data 
are analysed. Consequently, within this study we apply the generalized linear model (GLM) for 
binary data (McCullagh & Nelder, 1989) to simulate hourly rainfall data for an equatorial 
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rainforest site. In particular, we examine the impact of relaxing the stationarity assumption, by 
estimating transition probabilities that vary smoothly through the day, across days and across 
years. 
 
 
LOCATION OF RAINFALL OBSERVATIONS 

The data for this hourly rainfall modelling study were monitored at automatic raingauge “R3” 
within the Baru experimental watershed (Chappell et al., 1999, 2004a, 2006), close to the Danum 
Valley Field Centre (DVFC) in the Malaysian State of Sabah on Borneo Island, Southeast Asia. 
This raingauge is called “Site 3” within Bidin & Chappell (2006), and is located at 4°57′50″N; 
117°49′6″E, 50 km inland from the eastern coast of Sabah. The Baru watershed and wider DVFC 
locality forms the focus of ongoing hydrological research on rainfall, throughfall and wet-canopy 
evaporation (Chappell et al., 2001; Bidin & Chappell, 2006); soil-water regulation of landscape 
ecology; streamflow generation mechanisms (Chappell & Sherlock, 2005); rainfall–runoff 
modelling (Chappell et al., 1999, 2006) and erosion (Chappell et al., 1999, 2004a). All of this 
work could be advanced with a better model of the hourly characteristics of rainfall.  
 The vegetation at the locality of the raingauge is “lowland, evergreen dipterocarp” forest, with 
the upper canopy being dominated by Parashorea malaanonan, P. tomentella (both White 
Seraya), Shorea johorensis (Red Seraya) and Rubroshorea spp. The area is managed by Yayasan 
Sabah for commercial timber production and conservation.  
 Daily rainfall has been measured at the DVFC meteorological station since 1986, and over the 
20-year monitoring period (1986–2005) an average annual rainfall (AAR) of 2799 mm (with σ 
being 456 mm) has been recorded. Hourly monitoring in the DVFC locality began in 1990 with 
tilting-siphon raingauges (model R208, RW Munro Ltd, Woodford Green, UK); these were 
replaced in 1994 with tipping-bucket raingauges (model 103755D-04, Casella CEL Ltd, 
Kempston, UK) connected to Newlog dataloggers (Technolog Ltd, Wirksworth, UK) recording the 
time of every 0.20 mm of rainfall. Raingauge R3 was installed in a large canopy gap and placed on 
Bornean ironwood (Eusioderoxylon zwageri) towers at a height of 6 m to prevent disturbance from 
wild boar or cover by regenerating vegetation. All tipping-bucket rainfall data were totalled over 
5-minute periods. The time-series used within this study extended from 1 July 1995 to 30 June 
1996 (Fig. 1), giving approx. 105 408 5-min sampled observations and approx. 8784 observations 
re-sampled on an hourly basis. 
 
 
MODELLING METHODS 

The stochastic approach that we use to model the hourly rainfall data from raingauge R3 follows 
the methodology of Stern & Coe (1984), where the maximum likelihood (ML) estimation of 
smooth transition probabilities of the Markov chain for the occurrence process is obtained using 
the GLM. We use the GLM function in S-Plus (Insightful, Seattle, USA), with an approach usually 
applied in medical studies, where at each experimental unit (here meaning “‘observation”) there is 
an associated binary response (i.e. 0 or 1) and a vector of covariates. For our application, these 
covariates are the indicator variables, Zhij(t), for hours through the day, and days through the year. 
The link function we use is the logit: 
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where  is the time-varying Markov chain parameter for probability of rainfall occurrence at 
time t given its occurrence in last two samples i and j (these terms have values of 0 or 1), and the 
function ĝij(t) is modelled as a Fourier series. To demonstrate the improvement in model fit 
derived by relaxing the stationarity assumption, we fit the second-order transition probabilities as a 
Fourier series, firstly with the assumption of stationarity: 

( )tp ji,ˆ



Simulating hourly rainfall occurrence within an equatorial rainforest, Borneo Island 
 

 
 

Copyright © 2009 IAHS Press  

573

( ) ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
+=

jil

k

k
kji

k
kjijiji

h
b

h
aatg

,

1
,,,,0,,, 24

2
cos

24
2

sinˆ ππ
  (2) 

then as a Fourier series with harmonics (defined by terms mi,j and li,j) varying through the day and 
across days: 
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where the index h relates to the indicator variable for the 24 hours through the day, and index d 
relates to the indicator variable for the 366 days through that year. To apply the GLM function of 
S-Plus within the binomial family, we construct the response variable as a two-column matrix, 
with the first column given by the number of successes and the second given by the number of 
failures for each trial (Venables & Ripley, 1997). To estimate the four, second-order transition 
probabilities for the hourly data, we used the eight Zhij(t) terms, where h, i, j = 0 or 1. To estimate 
the probability that it starts to rain at time t = p00(f) we build a response matrix where the first 
column is given by Z001(t) and the second is given by Z000(t). The observations which have both 
values of Z equal to 0 are discarded by the function. The covariates are the indicator variables for 
hours, days, and seasons and can be treated as variables or as factors. The number of harmonics 
was chosen using the ANOVA analysis presented in Table 1, where all the harmonics included in 
the stationary model are shown by symbol *, and in the time-varying model by symbols * and +. 
To check the adequacy of the model, a Monte Carlo testing procedure with 100 realizations is 
used. The two modelling approaches are then compared by examination of four performance 
indicators. These are: (a) a visual comparison of the diurnal rainfall pattern and its seasonal 
evolution; (b) a comparison of the variance over differing periods; (c) a comparison of the number 
of wet spells observed throughout the day, over 366 days and over 12 months; and (d) a compari-
son of the length of the wet and dry periods. 
 
 
RESULTS AND DISCUSSION 

The stationary and time-varying second-order transition probabilities for our rainfall data that were 
derived by GLM techniques are shown in Fig. 2. In order to consider the impact of these on the 
simulated rainfall characteristics, notably variance, we present the observations in graphical and 
statistical form (Fig. 3, Table 2). 
 
Observational characteristics 
The 5-min rainfall time-series from station R3 re-sampled to hourly occurrence data are presented 
in Fig. 3. It is clear from observation of the 5-min and hourly occurrence data, that most of the rain 
falls in the afternoon with relatively little falling at night and in the morning (Figs 1 and 2). This 
pattern seems to evolve over the year (“seasonality”), with night/morning falls becoming more 
important in the November–February period. The 6-month period of the Northeast Monsoon 
within Sabah runs from November to April (Bidin & Chappell, 2003, 2006) and, thereby, includes 
this period of greater night/morning rainfalls. The dominance of mid-afternoon rainfall in most 
periods could be the result of localized convective rain-events from cumulus clouds developed by 
solar heating through the day (Battan, 1979; Riehl, 1979). Similar mid-afternoon peaks are seen at 
other inland tropical localities in Peninsular Malaysia (Ramage, 1964; Oki & Musiake, 1994; 
Sorooshian et al., 2002) and the Amazon (Lloyd, 1990). This contrasts with the oceans (and small 
islands), which show an early morning rainfall peak due to nocturnal cooling or sea-air 
temperature differences (Sorooshian et al., 2002; Bonell et al., 2004). Coastal regions have diurnal 
distributions which include elements of either land and ocean phenomena (Chen & Houze, 1997) 
or a distinctive regime resulting from the effects of land and sea breezes (Ramage, 1964; 
Sorooshian et al., 2002). 
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Fig. 1 Seasonal evolution of diurnal rainfall characteristics sampled on a 5-minute basis: (a) rainfall intensity (mm/5-min), and (b) rainfall occurrence  
(i.e. 1 or 0). 
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Fig. 2 The second-order transition probabilities for the R3 raingauge data sampled every hour over the period 1–30 June 1996, where (a) shows the  
stationary transition probabilities, and (b) the time-varying transition probabilities. 
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Table 1 ANOVA table for the stationary and time-varying models of hourly rainfall occurrence at raingauge 
R3 within the Baru watershed, Malaysian Borneo. 
Harmonics p00(t)  p01(t)  p10(t)  p11(t)  
 Df. resid. Dev. resid. Df. resid. Dev. resid. Df. resid. Dev. resid. Df. resid. Dev. resid. 
Null 7060 3218.099* 522 724.189* 522 501.646* 676 892.767* 
1 hour 7058 3105.400* 520 711.309* 520 488.951* 674 889.322* 
2 hours 7056 3076.502* 518 710.170 518 484.046* 672 884.208* 
3 hours 7054 3072.979 516 706.764 516 482.548 670 867.904* 
4 hours 7052 3071.668 514 704.662   668 865.957* 
5 hours 7050 3065.794 512 701.257     
1 day 7052 3060.214+ 518 707.079+ 516 459.904* 666 857.510+ 
2 days 7050 3051.573+ 516 703.884+ 514 458.403 664 851.510+ 
3 days 7048 3016.918+ 514 703.569 512 456.924 662 847.037+ 
4 days 7046 3006.255+     660 843.825+ 
5 days 7044 3002.012       
* harmonics used to fit stationary transition probabilities; + harmonics used to fit time-varying transition probabilities. 
Df.: degrees of freedom; Resid.: residual; Dev.: deviation. 
 
 
Table 2 Summary statistics of the 5-min, hourly and daily rainfall for raingauge R3 within the Baru 
watershed, Malaysian Borneo. The period “Summer 95” covers 1 July–26 November 1995, “Winter” – 
27 November 1995–10 March 1996, and “Summer 96” – 11 March 1996–30 June 1996. 
 Rainfall 

(mm) 
Mean 
rainfall 
(mm per 
period) 

SE Max. No. of wet 
spells 

% of wet 
spells 

Mean rainfall per 
wet spell 
(mm per period) 

5-min:        
All 3100.0 0.029 0.263 14.0   4423 4.196 0.701 
Summer 95 1289.4 0.030 0.278 9.0   1608 3.747 0.802 
Winter 1161.8 0.038 0.270 14.0 20022 6.687 0.575 
Summer 96   648.8 0.020 0.235 9.4     793 2.458 0.816 
Hourly:        
All 3100.0 0.353 2.149 57.6   1200 13.661 2.583 
Summer 95 1289.4 0.361 2.289 47.6     416 11.633 3.100 
Winter 1161.8 0.457 2.088 36.0     542 21.305 2.144 
Summer 96   648.8 0.244 2.002 57.6     242 9.084 2.681 
Daily:        
All 3100.0 8.470 14.829 167.0     279 76.230 11.111 
Summer 95 1289.4 8.654 12.472 55.6     112 75.168 11.513 
Winter 1161.8 10.960 19.228 167.0       88 83.919 13.202 
Summer 96   648.8 5.845 12.428 89.8       79 71.171 8.213 
 
 
 The summary statistics of the 5-minute and re-sampled data (Table 2) show that the statistical 
distributions are very skewed, with the skew increasing as the integration period reduces. The 
overall proportion of wet hours is about 13.7%, but there is a marked seasonality in the rainfall 
occurrence. Notably, the hourly data show that the proportion of the time that is wet in the winter 
months (strictly 25 November 1995–10 March 1996) is almost double that in the summer, while 
the mean intensity of rain per wet hour is much less in the winter.  
 
Comparison of model performance indicators 
Given the marked diurnal and seasonal cyclicity seen within the graphs and statistics of the hourly 
rainfall data from this equatorial rainforest site (Fig. 3, Table 2), we now compare those simulated 
by the Markov chain models using stationary and time-varying transition probabilities. The four 
performance indicators used are: (a) a visual comparison of the diurnal rainfall pattern and its 
seasonal evolution; (b) a comparison of the variance over differing periods; (c) a comparison of the 
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Fig. 3 Seasonal evolution of diurnal rainfall occurrence observed at Site 3 (R3) raingauge, Baru 
watershed (Malaysian Borneo), re-sampled on an hourly basis. 

 
 

 

(a) (b) 

Fig. 4 Seasonal evolution of diurnal rainfall occurrence on an hourly basis simulated using: 
(a) stationary transition probabilities and (b) time-varying transition probabilities. 
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Table 3 Observed variance in rainfall from raingauge R3 within the Baru watershed, Malaysian Borneo (for 
the period: 1 July 1995–30 June 1996) together with variances simulated by GLM Markov chains using 
stationary and time-varying transition probabilities. 
 Hourly Daily Monthly 
Observed 603.1304 12.5139 3013.273 
Stationary 628.1638   9.3374   322.002 
Time-varying 612.3512 11.1884 2728.939 
 
 

 
Fig. 5 The statistical distributions of the daily and monthly variance simulated by the models with 
either stationary or time-varying transition probabilities. The frequency of occurrence is plotted on the 
y-axis and the solid vertical line shows the variance in the observations. 

 
 
number of wet spells observed throughout the day, over 366 days and over 12 months; and (d) a 
comparison of the length of the wet and dry periods. 
 One hundred realizations of models with either stationary or time-varying transition prob-
abilities were undertaken. Figure 4 shows two representative realizations, one from each model 
structure. While both models fitted well to the total number of wet hours of 1200, the model with 
stationary transition probabilities (Fig. 4(a)) is visually very different from the observed patterns 
(Fig. 3). Notably, the diurnal pattern of rainfall occurrence exhibits little seasonality (Fig. 4(a)). In 
contrast, the realization incorporating time-varying transition probabilities (Fig. 4(b)) exhibits a 
seasonal evolution of the diurnal cycle similar to that of the observations (Fig. 3). 
 Table 3 shows the variance in the hourly observations and simulations when compared on a 
daily and monthly basis, while Fig. 5 shows the simulated distributions of the daily and monthly 
variance for the stationary and time-varying models. While the stationary model only slightly  
 
 

 
Fig. 6 Number of wet spells observed throughout the day, over 366 days and over 12 months. 
Observations are shown with asterisks, uncertainty bands for the model with time-varying transition 
probabilities by a solid line, and with stationary transition probabilities by a broken line. The frequency 
of occurrence is plotted on the y-axis. 
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Fig. 7 Stochastic distributions of the statistical properties of the duration of the wet spells and dry spells 
at raingauge R3, produced by model realizations with stationary transition probabilities and with time-
varying transition probabilities. 

 
 
underestimates the daily variance, it dramatically underestimates the monthly variance (i.e. 322 
against an observed 3013). 
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 Figure 6 shows the observed number of wet spells per hour, per day and per month, together 
with the 95% Monte Carlo envelopes from the 100 realizations of each method. The envelope for 
the time-varying model is plotted as a solid line, while that for the stationary model is plotted as a 
broken line. For the simulation of the cycles of wet spells through the day, both models encompass 
the observations. This is in some contrast to the situation over 366 days and 12 months, where the 
model with stationary transition probabilities fails to capture any of the seasonal dynamics seen 
within the observations. 
 Figure 7 shows the stochastic distributions of the statistical properties of the duration of the 
wet spells and dry spells produced by model realizations with stationary transition probabilities 
and time-varying transition probabilities. Both approaches are seen to reproduce the mean and 
third quartile of the statistical distribution for both wet and dry spells. While both models are seen 
to underestimate the standard error (SE) and maximum number of dry or wet spells, the model 
with the stationary transition probabilities shows the greatest underestimation.  
 
 
CONCLUSIONS 

This study has shown that the statistical properties of the diurnal rainfall cycle at an equatorial 
rainforest site, and the evolution of this cycle over the monsoon seasons can be simulated using 
hourly data where time-varying transition probabilities are used in Markov chain models. 
Application of the same approach using stationary transition probabilities produces results that: 
(a) have seasonal patterns that are visually very different from the observed patterns; (b) dram-
atically underestimate the monthly variance in rainfall occurrence; (c) produce Monte Carlo enve-
lopes that fail to capture any of the seasonal dynamics seen within the observations; and (d) show 
greater underestimation of the standard error and maximum number of dry or wet spells. These 
discrete stochastic models, through their seasonal character, create a conceptual and pragmatic link 
between finer temporal resolution of the hourly scale and longer time scales, where a continuous 
approach can be applied, using seasonal stochastic state-space models such as dynamic harmonic 
regression (DHR, Young et al., 1999; Chappell et al., 2001). The relative success of the Markov 
chain model using time-varying transition probabilities applied to hourly rainfall data, means that 
we can now use it within our ongoing modelling exercises (Chappell et al., 2004b, 2007; Solera-
Garcia et al., 2006) of land-use change impacts on the hydrology of managed tropical rainforests.  
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