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a b s t r a c t

Insufficient temporal monitoring of water quality in streams or engineered drains alters the apparent
shape of storm chemographs, resulting in shifted model parameterisations and changed interpretations
of solute sources that have produced episodes of poor water quality. This so-called ‘aliasing’ phenom-
enon is poorly recognised in water research. Using advances in in-situ sensor technology it is now
possible to monitor sufficiently frequently to avoid the onset of aliasing. A systems modelling procedure
is presented allowing objective identification of sampling rates needed to avoid aliasing within strongly
rainfall-driven chemical dynamics. In this study aliasing of storm chemograph shapes was quantified by
changes in the time constant parameter (TC) of transfer functions. As a proportion of the original TC, the
onset of aliasing varied between watersheds, ranging from 3.9e7.7 to 54e79 %TC (or 110e160 to 300
e600 min). However, a minimum monitoring rate could be identified for all datasets if the modelling
results were presented in the form of a new statistic, DTC. For the eight Hþ, DOC and NO3-N datasets
examined from a range of watershed settings, an empirically-derived threshold of 1.3(DTC) could be used
to quantify minimum monitoring rates within sampling protocols to avoid artefacts in subsequent data
analysis.

© 2017 Published by Elsevier Ltd.
1. Introduction

Storm-driven spikes in dissolved organic matter, nitrate, phos-
phorus, acidity, pharmaceutical residues and microorganisms in
natural streams and engineered drainage systems pose significant
risks to human health (Viviano et al., 2014; Carstea et al., 2016;
Fauvel et al., 2016). Because stream water quality is typically
highly variable through rain-storms (Rozemeijer et al., 2010;
Viviano et al., 2014), attribution of human-induced change is diffi-
cult without continuous, rapid monitoring through sequences of
storms (Kirchner et al., 2004; Wade et al., 2012). Furthermore,
episodes of poor water quality in streams that induce human health
issues or ecological damage may be short-lived during storms
(Viviano et al., 2014; Fauvel et al., 2016). Continuous, rapid moni-
toring of water quality variables in streams (or engineered drainage
systems such as sewers) is, therefore, needed to characterise these
short-lived but environmentallyesignificant events (Kirchner et al.,
2004; Wade et al., 2012; Viviano et al., 2014; Blaen et al., 2016;
happell).
Fauvel et al., 2016).
In order to model observed dynamics of particular streamwater

quality variables through storms (so called ‘storm chemographs’),
studies have shown that models may need to comprise multiple
solute pathways. This arises because:

(1) Different components of the chemograph recession may be
associated with different hydrological pathways in the
watershed (Barnes, 1939),

(2) Many watersheds exhibit more than one dominant hydro-
logical pathway, and

(3) Over short time scales, stream water quality dynamics are
often most strongly associated with hydrological dynamics
(Petry et al., 2002; Rozemeijer et al., 2010; Jones and
Chappell, 2014; Fauvel et al., 2016).

The fast hydrological pathways can be the ones responsible for
producing the ‘hot moments’ of biogeochemical response in
streams, and so must be monitored and modelled at a sufficiently
high resolution to capture the salient dynamics during model
calibration (and validation). If monitoring (and subsequent
modelling) is not undertaken at a sufficiently high sampling rate,

mailto:n.chappell@lancaster.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2017.06.047&domain=pdf
www.sciencedirect.com/science/journal/00431354
www.elsevier.com/locate/watres
http://dx.doi.org/10.1016/j.watres.2017.06.047
http://dx.doi.org/10.1016/j.watres.2017.06.047
http://dx.doi.org/10.1016/j.watres.2017.06.047


N.A. Chappell et al. / Water Research 123 (2017) 49e5750
the shape of each chemograph through storms may be altered (in
observations and simulated data). When the observations are
modelled, changes to the shape of the chemograph are exhibited in
changes to model parameters or their derived characteristics
capturing features such as the ‘flashiness’ of the chemograph (seen
in for example a Time Constant, TC, of a transfer function model of
rainfall to solute response). This may cause the modeller to infer a
different type of hydrological and/or solute pathway (cf. Barnes,
1939) or pathways with incorrect hydrological and/or chemical
characteristics. This shift from the true dynamics by generating
modelling artefacts is known as ‘aliasing’ within Signal Processing
Theory. Aliasing is another term for the effects of signal spectrum
distortion known as ‘spectrum folding’where signals at frequencies
higher than fN ¼ 1=ð2DtÞ are misrepresented in the lower part of
the spectrum. Here Dt is the time-step in the observations and fN is
known as Nyquist frequency. Aliasing phenomena are often illus-
trated with subsampled cyclical data displaying a completely
different cycle after subsampling. However, it applies equally to
episodic (also called transient or finite length record) time series
data (Lathi, 2010), such as storm-induced water quality responses.
The phenomenon is little acknowledged in hydrological modelling
(Littlewood and Croke, 2013) or hydro-chemical modelling of storm
dynamics (Kirchner et al., 2004).

Deployment of high frequency (i.e., sub-hourly monitored)
sensors of stream-water for certain water quality variables (e.g.,
electrical conductivity, pH, temperature, turbidity, dissolved oxy-
gen, fluorescence) has been increasing in recent years (Carstea
et al., 2016). Additionally, the number of variables that can be
monitored accurately with in situ stream sensors has also increased,
to include for example, dissolved organic carbon (DOC), dissolved
organic matter (DOM), nitrate (NO3-N) and chlorophyll-a (Blaen
et al., 2016; Reynolds et al., 2016). Other technological advances
now permit sampling and rapid chemical analysis by colorimetry
on stream banks for determinands at trace concentrations, e.g.,
phosphorus. Consequently, there is now greater opportunity to
obtain storm-related chemographs with shapes that are not
compromised by under-sampling, and so avoiding sampling-
related artefacts in model parameterisations (Jones et al., 2014).
There has been much recent research examining the effects of
monitoring frequency on the calculation of average solute con-
centrations (e.g., Reynolds et al., 2016). This research has demon-
strated that seasonally-averaged concentrations are relatively
insensitive to under-sampling. Littlewood and Croke (2013) have,
however, demonstrated for hydrological data that within-storm
dynamics and the resultant model parameterisation is very sensi-
tive to the effects of degrading the temporal resolution of the input-
output time-series. It is our belief that no studies have examined
systematically the impact of under-sampling stream chemical con-
centrations upon model parameters capturing chemical concentration
changes through storms, and the consequent impact on interpretation
of solute pathways.

While the cost of gaining water quality values using stream
sensors is relatively insensitive to the numbers of values collected,
unlike water sampling followed by laboratory-based chemical an-
alyses, there are practical/cost constraints on the use of these in situ
sensor systems. Sensor systems without automated telemetry have
a finite local data storage capacity. Greater monitoring rates also
result in greater power requirements that may be limited if suffi-
cient renewable energy or mains electricity is unavailable. Conse-
quently, there is considerable value in knowing the minimum
monitoring rate that does not distort the true shape of chemographs
needed for hydro-chemical modelling without creating unnec-
essary logistical issues for monitoring.

In many headwaters, dynamics in stream water quality may be
dominated by short-term changes in the hydrology (i.e., rainfall
time-series) via one or more water pathways (Langan and
Whitehead, 1987; Littlewood, 1987; Jones and Chappell, 2014).
Some process-based models of hydro-chemistry show sensitivity of
solute concentration responses to rainstorms, e.g., TNT2-P (Dupas
et al., 2016). Rigorous uncertainty analyses applied to process-
based models have, however, shown that many are attempting to
capture toomany processes and so have the downside of producing
distributions of the most sensitive model parameters (and related
Dynamic Response Characteristics, DRCs) that are too uncertain,
i.e., poorly identifiable. This makes process interpretation or
quantification of change in DRCs of water quality variables difficult
to ascertain. There is, therefore, a compelling argument, for making
sure that water quality models are no more complex than war-
ranted by the dynamics observed in the stream water quality var-
iables of interest. Indeed, Langan andWhitehead (1987), Littlewood
(1987) and Jones and Chappell (2014) have presented examples
systems models based on linear transfer functions where they
achieve this using model structures based solely on information
from hydrological dynamics.

The aim of this study was to quantify the point at which a
reducing monitoring rate would result in a significant shift in
model parameters of strongly hydrologically-driven water quality
models based on transfer functions, where the identified model for
fine monitoring intervals was very well-defined (i.e., high simula-
tion efficiency). These points of change were then analysed to
attempt to produce a new procedure for users of water quality
sensors (and bank-side analysers) deployed on streams to help
identify the minimum monitoring intervals necessary for later
modelling (whether by systems analysis or process-based algo-
rithms). Five specific objectives were defined to achieve this aim:

1/ To identify parsimonious transfer function models of example
stream water quality variables (based solely on rainfall input)
with data monitored at example sites at a high-frequency (i.e. 1,
5 and 15min). These initial models need to have high simulation
efficiency (and so be based upon only a short period of storm-
related dynamics) and ideally the DRCs should be physically
interpretable.

2/ To subsample the observed time-series of each water quality
variable to mimic successively longer monitoring intervals.
Parsimonious transfer function models of these data (combined
with the rainfall input integrated at the same interval) will be
identified using the same numerical tools.

3/ To identify the first significant drift in the key transfer function
DRC of the Time Constant (i.e., residence time of response or TC)
arising from successive models with increasing time-step
length.

4/ To attempt to understand and generalise the point at which data
and model time-step affects the parameters of systems models
based on transfer functions, and by inference the parameter-
isation of process-based models, and

5/ To outline a recommended procedure for identifying the mini-
mum monitoring intervals necessary for modelling storm-
driven, water quality dynamics in streams.
2. Methods

2.1. Selection of illustrative stream water quality datasets

The data utilised consist of those collected continuously at 1-
min or 5-min resolution specifically for this study, and existing
data collected continuously at 15-min intervals. Hydrogen ion (Hþ)
concentration (derived from in situ pH measurements) is the key
chemical variable examined in this study because it is widely
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measured and has a long history of high-frequency monitoring
(Littlewood, 1987). Example dissolved organic carbon (DOC) and
nitrate (NO3-N) data are also included because of the increasing use
of in situ UVeVis sensors (Reynolds et al., 2016). These data are
derived from seven watersheds which are all in headwaters, but
ranging in basin scale from 0.44 km2 to 316 km2 (Table 1). Key
watershed details responsible for the observed water quality
behaviour (i.e., soil type, geology and land-use) are given in Table 1.
Land-use covers both agricultural and forest systems, soils range
from acid to alkaline types, and hydrological systems are domi-
nated by either deep or shallow pathways depending on the nature
of the solid geology.

The 1-min resolution pH data at the Lower Hafren and
Trawsnant watersheds in the UK (Table 1) were measured using a
digital differential pH probe (Hach DPS1) connected to a SC200 pH
controller recorded on a Campbell Scientific CR1000 data-logger
(Jones and Chappell, 2014). The 5-min resolution pH data were
monitored in the Baru Watershed (Malaysian Borneo) using a
potentiometric pH::lyser pH probe connected to a S::CAN con::-
cube controller and data-logger (Supplementary Material Section
S1). The 15-min resolution pH data from the Pang watersheds
(Buckleberry and Tidmarsh monitoring stations in the UK) and
Blind Beck watershed (UK) were measured using a YSI 600R sonde
fitted with a 6581 pH probe connected to a Campbell Scientific
CR10X data-logger (Ockenden et al., 2014). The data for the Pang
watersheds were obtained from the NERC Environmental Infor-
mation Data Centre. In addition to the 1-min resolution pH data
from the Trawsnant watershed, 15-min DOC data were obtained
using an S::CAN spectro::lyser (SupplementaryMaterial Section S1)
locally calibrated to samples analysed (after filtering through
0.45 mm ash-less filter papers) by thermal oxidation and NDIR de-
tector using a Shimadzu TOC-Vcph Analyzer (Jones et al., 2014). The
example dataset of 15-min resolution NO3-N was monitored in the
North Fork watershed (USA) using a Hach ‘Nitratax plus SC’ nitrate
sensor connected to a Hach SC200 controller, and obtained from
the USGS National Water Information System (http://waterdata.u
sgs.gov/nwis 1/6/17). The DRCs of these data were obtained by
modelling the dynamic relationship between a single rainfall time-
series monitored within each watershed and the observed water
quality variable (expressed as a concentration). These rainfall data
were obtained from a single tipping-bucket raingauge installed
within each basin.

2.2. Identification of most parsimonious transfer function model
structure and parameters

The primary objective of the systems analysis was to quantify
Table 1
Characteristics of watersheds included in this study.

Stream basin area
(km2)

soil types geology

Baru, Malaysia 0.44 Alisol Neogene mudstones

Trawsnant, UK 1.21 Histosol, podzol, gleysol Lower Palaeozoic sh
greywackes and grit

Lower Hafren, UK 3.6 Podzol, histosol, cambisol and
stagnogley

Lower Palaeozoic sla
greywackes and sand

Blind Beck, UK 8.8 Stagnosol, leptosol, cambisol,
gleysol

Triassic sandstone, C

Pang at Buckleberry,
UK

110 Leptosol, cambisol, luvisol,
planosol

Cretaceous chalk, Pa

Pang at Tidmarsh,
UK

150 Leptosol, cambisol, luvisol,
planosol

Cretaceous chalk, Pa

North Fork
Maquoketa, USA

316 Luvisol, acrisol Ordovician shale, car
and dolomite
the point at which a reducing monitoring rate would result in a
significant drift in key model parameters of strongly
hydrologically-driven, water quality models based on linear
transfer functions. To reiterate, identification of this point reliably
(i.e., with a low degree of uncertainty) requires minimisation of the
number of model parameters that are able to reproduce the water
quality dynamics with a high simulation efficiency. Such models,
where transfer function structures and parameter sets are derived
directly from observations within systems analysis, may be
described as ‘parsimonious models’ (Beck, 1987). Within linear
transfer function models of predominantly rainfall-driven, water
quality dynamics, the key parameter describing the shape of the storm
chemograph and hence the storm dynamics, is the TC of the response
(Langan and Whitehead, 1987; Littlewood, 1987; Jones et al., 2014;
Jones and Chappell, 2014). The other parameters of the linear
transfer function, namely the pure-time-delay (t) between the
input and its output response, and the steady-state gain of the
system, do not affect the shape of the storm chemograph. One
approach to identify transfer functions is the Refined Instrumental
Variable Continuous-time Box�Jenkins identification (or RIVC) al-
gorithm of Young (2015). RIVC is one of several time-series
modelling tools within the CAPTAIN Toolbox for Matlab (Taylor
et al., 2007; http://www.lancaster.ac.uk/staff/taylorcj/tdc/downloa
d.php 1/7/17) and was applied within this study following a Data-
Based Mechanistic (DBM) modelling strategy. The DBM strategy
has three stages. First, a range of possible model structures char-
acterising the relationship between rainfall and stream concen-
tration time-series for each water quality variable were identified
using RIVC and associated Matlab modelling tools. The feasible
model structures and associated parameter sets were derived
directly from the observations, and so are defined as data-based.
Second, many of these models were then rejected after evaluation
against a range of mathematical-statistical criteria (Jones et al.,
2014). Lastly, any of these models that did not have a feasible hy-
drological process interpretationwere then rejected. Consequently,
only those mathematically and statistically sound models accepted
as having a hydrological interpretation were defined asmechanistic
and therefore, described as Data-Based Mechanistic models.

To illustrate how RIVC-defined model parameters are used to
derive the TC of the rainfall-driven concentration responses, an
example model structure for 1-min monitored time-series of ni-
trate (NO3-N) concentrations produced from two parallel hydro-
logical pathways is presented. In continuous-time transfer-function
form for 1-min monitored NO3-N concentration, this can be given
as:
land-use & land-cover Reference

and sandstones Lowland dipterocarp rainforest Chappell et al.
(2012)

ales, mudstones,
s

Coniferous plantation Jones and Chappell
(2014)

te, mudstone,
stone

Coniferous plantation Bell (2005)

arboniferous limestone Agriculture (improved and
unimproved pasture)

Ockenden et al.
(2014)

leogene sediments Agriculture (arable and pasture) Wade et al. (2012)

leogene sediments Agriculture (arable and pasture) Wade et al. (2012)

bonate, dolomitic shale Agriculture (arable) Witzke (1998)

http://waterdata.usgs.gov/nwis
http://waterdata.usgs.gov/nwis
http://www.lancaster.ac.uk/staff/taylorcj/tdc/download.php
http://www.lancaster.ac.uk/staff/taylorcj/tdc/download.php
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NO3 � N ¼
�

b0sþ b1
s2 þ a1sþ a2

�
e�stR ; s � d

dt
(1)

where NO3-N is the nitrate concentration (meq/L monitored every
minute), R is the rainfall (mm/1-min), t is the pure time delay be-
tween R and an initial NO3-N response (given in number of 1-min
intervals), a1 and a2 the parameters that jointly capture the rate
of watershed soil-water exhaustion or residence time of response
(/1-min), b0 and b1 the parameters (jointly with the a1 and a2 pa-
rameters) that capture the magnitude of NO3-N gain (meq/L NO3-N
1-min/mm), t is time in 1-min periods, and s is the Laplace operator
(Young, 2015). Prior to DRC derivation, a model with two parallel
hydrological pathways should be decomposed by partial fraction
expansion into two parallel, first-order transfer functions:

NO3 � N ¼ bf
s� af

e�stRþ bs
s� as

e�stR (2)

where af and as are the parameters representing the rate of
watershed soil-water exhaustion of NO3-N or residence time of the
fast and slow components of response (/1-min), and bf and bs the
parameters capturing the magnitude of the fast and slow solute
transport components, respectively (meq/L NO3-N 1-min/mm). The
af and as model parameters can then be interpreted in terms of the
DRCs of the TC of the fast solute pathway and slow solute pathway.
For the fast path this is given as:

TCfast ¼
Dt
af

(3)

where Dt is the time-step in the observations (1-min in this
example).

2.3. Quantification of time-step effects: developing a new
methodology

To quantify how reducing the sampling interval effects stream
chemograph shape (and parameters describing the relationship
between rainfall and the storm chemograph), the model derived
from the highest frequency sampling should first be simulated with
a high efficiency. The objective function used in this study was the
Nash-Sutcliffe Efficiency (E or Rt

2: Young, 2015), and only models
with an Rt

2 > 0.90 at the highest measurement frequency were used
for the subsampling exercise. To ensure this, only short periods of
example water quality data covering two to five rainstorms were
modelled (Table 2). These periods comprised of between 300 and
12,000 contiguously measured water quality values to demonstrate
the applicability of the approach to relatively short sets of data. In
order tomimic successively longer monitoring intervals, newwater
quality datasets were produced by taking time factors of the 300 to
12,000 measured values (Table 2). The rainfall data monitored at
the same intervals as the original concentration data were then
integrated over the new longer monitoring intervals to permit the
rainfall to concentration modelling (i.e. the rainfall and concen-
tration data need the same time-step within the transfer function
identification process).

Optimal model structure was identified initially for first-order
transfer function models (i.e. models with one a value and hence
one TC value) using the highest Rt2. The data were then applied to
estimate second-order model structures. Where the resultant Rt

2

was higher than that for first-order models applied to the same
data, these models were then accepted as superior but only if they
also met a range of evaluation criteria. These criteria included: i)
changes of less than þ1.0 in the Young Information Criterion (YIC),
ii) a transfer function without complex roots, i.e., no oscillatory
behaviour in the impulse response function, and iii) the sign (±) of
the two denominator roots of the transfer function polynomials
were both negative (see further explanation in Jones et al., 2014).
This procedure was repeated for third-order models.

The next step in identifying the minimummonitoring rates was
visualisation of the simulated chemographs at the successively
subsampled monitoring intervals to identify changes in storm
chemograph shape qualitatively. The derived TC values for each
example watershed dataset were then plotted against the
mimicked sampling interval. To identify the subsampling interval
where the sole TC or fastest TC of higher-order models was sub-
stantially affected (i.e., first systematic drift) by the reduced sam-
pling rate, a new evaluation criterion derived from empirical
observation of preliminary results was calculated:

DTC ¼ maxðTCO; TCiÞ
minðTCO; TCiÞ

(4)

where TCO is the first-order model TC value or TCfast value of higher-
order models derived from the original 1, 5 and 15 min water
quality observations (h), and TCi is the TC (or TCfast) value derived as
each successively subsampled water quality data-set was modelled
(h). This DTC criterion is, therefore, a ratio of the larger value of
pairs of TCO and TCi values to that of the smaller, so that the
magnitude of change can be calculated irrespective of the direction
of drift. These DTC values were then plotted against the mimicked
sampling interval to help quantify:

i/ The magnitude of DTC associated with the first substantial
drift in value as sampling interval is reduced by factors of the
original interval (Table 2),

ii/ The mimicked monitoring interval (in h) at which sub-
sampling by factors has resulted in the first substantial shift
in derived TCi from TCO (Tdrift), and the longest interval
resulting in a TCi that has not drifted substantially from TCO
(Tacceptable or Tacc),

iii/ The mimicked monitoring intervals Tacc and Tdrift expressed
as a percentage of the TCO (in part to evaluate the tentative
17% TCO ‘rule’ suggested by Young, 2010),

iv/ An analytical protocol for use by others to identify objectively
a minimummonitoring interval that does not alias dynamics
within strongly hydrologically-driven, water quality models,

v/ If the effect of aliasing on a key DRC of water quality dy-
namics (namely TC) can be generalised, and

vi/ If a common minimum measurement interval (h) can be
identified for the example data, to provide a first estimate for
those authorities deploying water quality sensors or bank-
side analysers for routine monitoring, where the capacity
to undertake any system analysis is limited.

3. Results and discussion

3.1. Identification of optimal models of stream water quality
dynamics through storms

The optimal linear transfer function models of hydrologically-
driven, water quality dynamics identified for the selected short
period of storms are given in Table 3. For the Baru basin as an
example, the top 20 identified models based on the primary Rt

2

criterion are shown in Supplementary Material Table S1, with the
optimal model selected after evaluation against the secondary
criteria (see 2. Methods and Table 2) shown in bold. All transfer
function models were identified using the RIVC algorithm within
version 7.5 of the CAPTAIN Toolbox implemented in version R2013a



Table 2
Data periods, water quality variables and subsampled intervals.

Site variable Period values resolution
(min)

subsampled intervals, all factors of number of values in modelled dataset at highest
resolution (min)

Trawsnant Hþ 08/10/2014 20:22e11/10/2014
11:43

3800 1 1, 2, 5, 10, 20, 25, 40, 50, 76, 95, 100, 152, 190, 200

Hafren Hþ 20/12/2014 22:10e29/12/2014
22:35

12000 1 1, 2, 5, 10, 20, 30, 40, 50, 60, 80, 100, 150, 300, 400, 500, 600, 750, 800

Baru Hþ 16/06/2015 12:44e21/06/2015
10:00

1408 5 5, 10, 20, 40, 55, 80, 110, 160, 220, 325a

Blind Beck Hþ 04/10/2008 04:00e18/10/2008
18:00

1400 15 15, 30, 60, 75, 105, 120, 150, 300, 375, 420

Pang at
Tidmarsh

Hþ 07/12/2006 00:30e10/12/2006
03:15

300 15 15, 30, 45,60, 75, 90, 150, 180, 225, 300

Pang at
Buckleberry

Hþ 07/01/2004 13:45e22/01/2004
03:30

1400 15 15, 30, 60, 75, 105, 120, 150, 300, 375, 420, 525a, 600b, 750b, 840b, 1050b, 1500b

Trawsnant DOC 27/05/2013 11:45e04/06/2013
19:45

800 15 15, 30, 60, 120, 150, 240, 300, 375, 480

North Fork NO3-N 20/06/2012 01:15e17/07/2012
23:00

2680 15 15, 30, 60, 75, 120, 150, 300, 600

a Model failed evaluation criteria (e.g., negative fast%; TCi has an imaginary number) - see 2. Methods.
b No model identifiable.

Table 3
Model structure, parameters (a1, a2, b0, b1,t) and model evaluation measures (Rt2, YIC) for the optimal rainfall to stream concentration system-models.

Site variable interval (min) modela a1
(af)

a2 b0 b1 t

(min)
Rt
2 YIC

Trawsnant Hþ 1 [1 1262] 0.00096 5.5383 262 0.9054 �12.19
Hafren Hþ 1 [1 1 0] 0.00063 1.26400 0 0.9094 �13.15
Baru Hþ 5 [2 2 14] 0.02533 (0.02663) 1.93E-05 0.30547 0.000117 70 0.9424 �8.50
Blind Beck Hþ 15 [2 2 17] 0.02985 (0.07694) 7.16E-05 0.085547 0.000437 255 0.9037 �6.14
Pang at Tidmarsh Hþ 15 [1 1 22] 0.00961 0.000155 330 0.9726 �12.00
Pang at Buckleberry Hþ 15 [2 2 8] 0.01258 (0.00148) 1.09E-05 0.001573 2.44E-06 120 0.9334 �5.37
Trawsnant DOC 15 [1 1 13] 0.01250 0.27863 195 0.9856 �13.60
North Fork NO3-N 15 [1 1 98] 0.00195 0.23143 1470 0.9008 �11.66

a Model structure is given as [denominators, numerators, pure time delays] in Eq. (1).
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of the Matlab programming environment. These purely linear
transfer functionmodels were able to capturemore than 90 percent
of the storm-related dynamics in the concentration time-series
(Table 3), thereby achieving the first objective. The high efficiency
is also demonstrated in the correspondence of the simulated con-
centration time-series’ and the observed data (Fig. 1ac and
Supplementary Material Fig. S1-S8). The high efficiency shows the
dominance of the rainfall control on storm chemographs in the
selected headwater streams through short sequences of storms, as
demonstrated previously by Petry et al. (2002), Rozemeijer et al.
(2010), Jones and Chappell (2014) and Fauvel et al. (2016). Minor
additional effects of nonlinearity on the dynamics of these short
time-series, were not simulated because of the adverse impacts of:
i/adding additional model parameters to the uncertainty in the
critical TC values, and ii/the adverse impact on the hydro-chemical
interpretation of the TC values (Jones et al., 2014).

The high model efficiency, necessary to attribute change in model
parameters to under-sampling rather than model structural in-
adequacies, required second-order model structures for three out of
the seven datasets. Such second-order structures of hydro-
chemical response in streams can be interpreted as the presence
of two dominant solutes pathways delivering chemicals to streams,
perhaps related to two hydrological pathways. These second-order
models have five model parameters (i.e., a1, a2, b0, b1,t) against the
three model parameters of the first-order transfer function models
(i.e., a1, b0, t). The effect of an increase in model parameters can be
seen in the deterioration of the YIC model-evaluation measure (i.e.,
a less positive value: Supplementary Material Tables S2eS9). As the
continuous-time transfer function models presented here are
identified directly from the information content of the observa-
tions, fewer parameter numbers are needed when compared with
other types of model that have a simplified model structure, but
still require 10e30 model parameters (e.g., Dupas et al., 2016). It
would be difficult to use models utilising so many parameters to
identify change in one model parameter (e.g., a1) as sampling is
changed, because of parameter identifiability issues.

The systems models based on transfer functions identified
within this study may be considered to be robust for the selected
periods because they are able to capture the dominant dynamics in
rainfall-solute systems with a very wide range of residence or
exhaustion time, gain and pure-time-delay parameters, in addition
to identifying model order (Jones et al., 2014; Jones and Chappell,
2014). The rate of exhaustion in the fastest component of solute
response to a rainfall input varies from a flashy 0.02663/1-min Baru
Hþ response (af) to a very slow 0.00195/15-min NO3-N response in
the North Fork watershed (a1; Table 3). This equates to a very short
residence time of response of 3.4 h for the Baru Hþ response (TCfast),
and a relatively long residence time of 128.0 h for the North Fork
NO3-N response (TC). The sensitivity of the fastest stream concen-
tration response to a rainfall input (b0) varies from 0.000155 meq/L
Hþ 1-min/mm in the chalk-dominated Pang (Tidmarsh) watershed
to a very sensitive 5.5383 meq/L Hþ 1-min/mm response in the
upland acidic Trawsnant basin. Further, the delay between a rainfall
input and an initial concentration response in the stream (t) varies
from no delay (i.e., Hafren Hþ) to response delayed by 24.5 h (i.e.,
North Fork NO3-N).While the examples are primarily of Hþ response,
the two additional examples (NO3-N and DOC) show that the approach
can be applied equally to other water quality variables where they are



Fig. 1. Simulated versus observed concentration time-series’ (Csim and Cobs, respectively) for two example datasets monitored at a high frequency, together the derived DTC change
criterion for the optimummodel for these data and after successive subsampling: a) and b) are based on the 1-min Hþ concentration time-series from the Trawsnant basin; c) and d)
15-min NO3-N from the North Fork basin. Scaled rainfall time-series are also shown in a) and c). The DTC for the observed high frequency data are shown in b) and d) with an filled
red circle, and for the subsampled data with filled blue circles, while the threshold of change in DTC of 1.3 is shown as a broken line. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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strongly hydrologically-driven (Table 3).
3.2. Identification of thresholds of change in parameters of water
quality dynamics

Having derived optimal models of the rainfall-concentration
dynamics, the water quality datasets used to derive these models
were subsampled by taking time factors of the 300 to 12,000
measured values (Table 2), and rainfall data integrated to the same
time-intervals. The RIVC algorithm was then used to attempt to
identify similarly optimal models for these sub-sampled data
(objective 2). Feasible models could be identified for most of these
progressively thinned datasets (Table 2) and their structures and
efficiencies are shown in Supplementary Material Tables S2-S9. The
TCi values for models from iterations of the reduced sampling rate
were derived using Eq. (3). These TCi values relate to single-
pathway models or the fast component of decomposed parallel
second-order models (Eq. (2)). The DTC values (Eq. (4)) for each
iteration were then calculated and also presented in
Supplementary Material Tables S2eS9. Only one dataset (Hþ

monitored at Buckleberry) produced no identifiable models after
thinning beyond a certain sub-sampling time (Table 2 and
Supplementary Material Table S7). Further, the model for this
dataset at a 525-min sampling time produced a TCi with a large
imaginary number component and so was rejected on the basis of
the DBM evaluation criteria. The second-order model for 325-min
sampling of the Baru watershed Hþ data produced a negative fast%
(see Eq (8) in Jones et al. (2014). value and was also rejected on the
basis of the DBM evaluation criteria. All other simulations produced
feasible models (Supplementary Material Tables S2eS9) that met
the DBM evaluation criteria.

For each watershed, the DTC values were plotted against their
respective subsampling interval (Fig. 1bd and Supplementary
Material Figs. S17eS24). Using these plots the point at which DTC
began to drift systematically from the initial value of unity was
somewhere between the sub-sampling intervals of 152e190 min
(Trawsnant Hþ), 600e750 min (Hafren), 110e160 min (Baru),
105e120 min (Blind Beck), 180e225 min (Pang at Tidmarsh),
300e375 min (Pang at Buckleberry), 240e300 min (Trawsnant
DOC), and 300e600 min (North Fork). The initial value in these
ranges equates to the TCacc and the second value the TCdrift (Table 4).
From Fig. 1bd (and Supplementary Material Figs. S17eS24), it can
be seen (purely empirically) that for all watershed datasets studied
a DTC value of 1.3 lies within the ranges of these change points
(Fig. 1bd), i.e., the point where the TCi values differ from TCO values
by a factor of 1.3 when the larger of the two values is presented as a



Table 4
Longest sampling interval prior to the systematic drift in the DTCmeasure (Tacc), together with the associated values of the time constant and change criterion for this value and
when change first identified (Tdrift). Values are presented to four decimal places to permit direct comparison with the values in Supplementary Material Tables S2eS9.

site variable sampling interval TC DTC

Tacc (min) Tdrift (min) TCacc (h) TCdrift (h) DTCacc DTCdrift

Trawsnant Hþ 152 190 16.1068 18.8288 1.0740 1.3484
Hafren Hþ 600 750 26.9490 14.9136 1.0194 1.7726
Baru Hþ 110 160 2.9058 1.5908 1.1684 2.1343
Blind Beck Hþ 105 120 7.6200 6.2776 1.2053 1.4631
Pang at Tidmarsh Hþ 180 225 24.6048 8.2917 1.0573 3.1649
Pang at Buckleberry Hþ 120 300 22.3922 13.7787 1.0431 1.5580
Trawsnant DOC 240 300 16.0387 12.2864 1.2475 1.6285
North Fork NO3-N 300 600 129.7649 247.2637 1.0141 1.9323

Fig. 2. Onset of systematic drift in dynamics (‘aliasing’), lies somewhere between the
TCacc and TCdrift values for each site (shown with a line between each pair of values).
The lower value of each pair is always TCacc, and higher value TCdrift. The positive
relationship between sampling interval (dt) and 16.67% of TCo (following the tentative
suggestion of Young, 2010) is shown with a broken black line. The observed variability
about this relation is also shown by fitting a linear model through the middle of the
pair of values furthest from the trend line (broken red lines). Due to the very wide
range of TCi exhibited by the example data, the TCi axis is presented on a lognormal
scale. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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ratio of the smaller (Eq. (4)). After the point where DTC began to
drift systematically from the initial value of 1.0000 (i.e., TCO/TCi and
TCi/TCO), the slope of the chemograph recessions were visually
different (Supplementary Material Fig. S9eS16), as expected (see
Fig. 1d vs Fig. 1c in Kirchner et al., 2004). While there is an apparent
consistency in the onset of aliasing identified using the new DTC
criterion, such consistency was not seen in the Rt

2 or YIC criteria
when changing sampling intensity (Supplementary Material
Tables S2eS9). The YIC is a measure of the uncertainty in the
parameterisation. As the largest shifts in YIC did not occur at the
point of systematic DTC drift (Supplementary Material
Tables S2eS9), adding lengthy parameter uncertainty estimation
would not give substantial improvements for the potential end-
users to the procedures outlined.

The sampling interval for the beginning of the systematic drift
(i.e., a range between Tacc and Tdrift; see Fig.1bd) can be expressed as
a percentage of the TCO. This was calculated to be between 15 and
18% (Trawsnant Hþ), 38e47% (Hafren), 54e79% (Baru), 20e25%
(Blind Beck), 12e14% (Pang at Tidmarsh), 23e29% (Pang at Buck-
leberry), 20e25% (Trawsnant DOC), and 3.9e7.7% (North Fork NO3-
N) of the TCO. Young (2010) tentatively suggested that the TCO value
might be used to set the minimum monitoring interval to avoid
aliasing the dynamics of natural input-output systems. The findings
from our analysis do indeed show an association between the TC
value and the sampling interval at which dynamics become aliased
(Fig. 2). Young (2010) tentatively suggested that minimum sam-
pling intervals might be set at approximately one sixth of the TCO,
which is equivalent to 17% of the TCO. In some contrast, our findings
show that while there is an underlying link with the TC, the points
of change vary from a sampling rate of less than 10% of the TCO to
one greater than 50% of the TCO. These variations are likely to occur
as stream water quality monitoring rate is reduced because of the
impact of characteristics that are specific to each dataset (i.e.,
watershed, hydro-chemical variable, sensor type etc.). Differences
in data characteristics result from: i/the differential effects of
integrating the hyetographs with different properties over succes-
sively larger intervals (Kretzschmar et al., 2014), ii/the effects of
different degrees of sensor or calibration noise within the observed
chemographs (Lepot et al., 2016), and iii/the differential ability of
the modelling tools to simulate input-output dynamics as the in-
formation content deteriorates with reduced monitoring interval
(Littlewood and Croke, 2013).
3.3. Recommendations for defining minimum monitoring rates of
stream water quality variables

To reiterate, this work was stimulated by two recent trends.
Firstly, there has been an increase in deployment of stream sensors
and bank-side analysers producing water chemistry data at a high
frequency (sub-daily) resolution. Secondly, the impact of under-
sampling of water quality variables on the reliability of watershed
modelling is beginning to emerge in system analysis (Jones et al.,
2014; Reynolds et al., 2016). Given these two drivers, this study
sought to develop an example protocol for use by others in
designing streammonitoring systems that give data for subsequent
modelling (whether using system analysis or process models) that
is less affected by under-sampling issues. In this first attempt at
deriving a modelling-relevant monitoring protocol for such sys-
tems, eight example datasets observed at a high-frequency were
selected fromwatershed systems exhibiting very flashy to damped
concentration responses in systems driven primarily by rainstorm
inputs. These example systems also exhibited a diverse range of
dominant water pathways and hence potential solute pathways,
from shallow tropical systems to temperate systems with deep,
rock aquifers.

In broad terms, our approach using high-frequency observations
combined with systems analysis based on linear transfer function
modelling, has demonstrated that the storm-related dynamics
within stream concentration time-series may be unaffected by
sampling intensity at least up to rates of every 1 h (i.e., Tacc in
Table 4). Limiting water quality sensing data storage to once every
hour would have significant advantages for data logger memory



N.A. Chappell et al. / Water Research 123 (2017) 49e5756
and power consumption. These findings were primarily based upon
Hþ concentration time-series, and such a rate would not be ex-
pected to be sufficient for modelling water quality variables pri-
marily carried by overland flow, such as turbidity and phosphorus
concentration. Moreover, the actual minimum sampling rates for
the data studied (primarily Hþ but with DOC and NO3-N) varied
substantially from less than 120 min to greater than 600 min
(Table 4). This range in minimum sampling rate is seen to be
important if one considers recent attempts at higher frequency
stream water sampling (namely every 7 h) for subsequently labo-
ratory analyses (Halliday et al., 2013).

Young (2010) tentatively suggested that the minimum sampling
rate for streamflow and water quality response could be estimated
from a fixed proportion of the residence time of the stream's
response to rainfall. This proportion was said to be approximately
one sixth (i.e. 17%) of the time constant (TCO) of an input-output
transfer function linking the two variables. While our findings
confirm the worth of the time constant in identifying minimum
sampling rates, the relationship with the time constant varied
considerably between our water quality examples. While the Baru
Hþ dataset required sampling at a rate approaching the time con-
stant (i.e. 54e79% TCO), the North Fork NO3-N dataset required a
much higher degree of sampling within the period defined by the
time constant (i.e. 3.9e7.7% TCO). This means that those needing to
determine minimum monitoring rates of stream water quality
variables at their specific sites would need to undertake approaches
such as the iterative combined sub-sampling and modelling pro-
cedure outlined here.

The sampling intervals above which the storm-related water
quality dynamics (expressed in terms of TC) drift from the true
values due to the phenomenon of ‘aliasing’, were clearly identifi-
able by the new procedure outlined here (Fig. 1bd). This procedure
might be considered by others seeking to optimise their monitoring
strategies provided that they, 1/can show that the dynamics in the
water quality time series of interest are dominated by the dynamics
in one controlling variable (e.g., rainfall), 2/obtain an initial period
of high-frequency, stream water quality data (with parallel rainfall
data) for a short sequence of contiguous storms, 3/are able to
simulate the high-frequency dynamics using parsimonious
transfer-function based approaches (e.g. RIVC, IHACRES, MATLAB-
BJ), 4/mimic the effects of reducing sampling intervals by succes-
sively sub-sampling the original observations and re-applying the
same modelling tools, and 5/use the derived model parameters to
identify systematic drift within the empirical DTC criterion. Ideally,
each concentration value within the high-frequency data should
have high accuracy against laboratory measured values. Sensor
inaccuracies cause noise within the time-series that affect the un-
certainty and true identification of model parameters and conse-
quently derived values such as TC. Consequently, the algorithms
chosen to identify optimal transfer function parameters need to
incorporate routines that mitigate the effects of noise, such as those
within RIVC (Young, 2015). Similarly, the model identification
routines should have the capacity to identify efficient model
structures with the least parametric uncertainty, so that sampling
related changes in TC can be seen above model error. The parallel
rainfall data needs to be representative of that which generates the
concentration responses. Consequently, as watershed size increases
the rainfall time-series used as input for the models should be
based upon spatial integration of ever larger numbers of
raingauges.

For the range of predominantly rain-driven, water-chemistry
dynamics exhibited by our examples, a common DTC value seemed
to define the minimum sampling interval for all datasets. An
apparent threshold could be set at a DTC value of 1.3 and apply to all
datasets examined. Whether, this apparent threshold is present
after application of these procedures to other water quality vari-
ables (physical, biological and chemical: Fauvel et al., 2016) or
different watershed settings (e.g., sewers: Carstea et al., 2016; Lepot
et al., 2016) should be explored at time of application or in future
research studies.

4. Conclusions

This research has demonstrated the value of a systems analysis
technique based on transfer functions in helping to identify the
monitoring frequencies required for water quality variables in
rainfall-driven environmental systems. Specifically, the work
revealed that:

� Where the dynamics of stream water quality are dominated by
rainfall dynamics and the variables measured at a high fre-
quency (1e15 min), then streamwater quality may be able to be
modelled using transfer functions with rainfall input data alone.

� These high frequency data were sub-sampled to mimic less
frequently sampled datasets. The rainfall-driven concentration
dynamics, expressed as parameters of the transfer function
based systems model, were shown to be distorted as sampling
reduced beyond once every 1 h to 10 h, depending on the
chemical variable and location.

� The distortion in model parameters, due to under-sampling of
stream water quality, is known as ‘aliasing’ in systems analysis
and such parameter shifts affect the interpretation of the pro-
cesses (physical, chemical or biological) in models of biogeo-
chemistry, hydro-chemistry, or hydrology.

� It has been suggested previously that the onset of aliasing might
be associated with the time constant parameter of linear
transfer function models of environmental systems. This study
presents the first evidence that aliasing is associated with shifts
in the time-constant parameter (TC) identified from systems
analysis of high frequency water chemistry data. From a Signal
Processing perspective, the shift in the TC reflects a shift or
distortion of the signal spectrum. From a water quality
perspective, the shift in the TC reflects a distortion in the shape
of the storm chemograph. A new empirically-derived statistical
measure, 1.3(DTC), was derived for headwaters with a wide
range of rainfall-derived chemical dynamics, and indicates the
minimum sampling required to avoid such distortions and so
errors in process interpretations arising from subsequent
modelling of inadequately sampled data.

� With the availability of a short sequence of high frequency water
chemistry data, this statistical measure, 1.3(DTC), could be
derived using widely available systems analysis techniques
based on linear transfer functions (not just the RIVC algorithm
presented here), and used as a guide to establish minimum
monitoring rates for long-term sampling of natural streams or
indeed any strongly rainfall-controlled drainage system (e.g.,
sewers, urban drains)

� Further evaluation of the approach is required to assess its wider
applicability for designing monitoring protocols for a much
broader range of water quality characteristics (including phys-
ical and biological properties) than could be presented in this
initial study.
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