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Abstract The South Creek Experimental Catchment (Queensland, Australia) was the first forest 
hydrological study established within cyclone-affected areas of the humid tropics to address runoff processes 
or surface-groundwater interactions. From the outset it was believed that the very flashy nature of the 
responses within this area of Queensland was at least partly attributed to rainfall characteristics associated 
with tropical cyclones. This study quantifies the impact on the dynamic response characteristics of very 
flashy streamflow responses to rainfall from a sequence of tropical cyclones relative to those associated with 
local convective events. To achieve this we have applied state-of-the-art time-series modelling methods to 
South Creek data and to that from a basin not directly affected by tropical cyclones but where the soils and 
slopes are comparable. For both datasets our analyses best captured the rainfall-runoff responses with 
second-order continuous-time transfer functions where 60% of the streamflow was associated with a fast 
pathway. While the recession time constant (TC) of this fast pathway was 75 minutes for the basin with 
rainstorms produced by local convective events (namely the Baru Experimental Catchment in Malaysian 
Borneo), the TC was only 21 minutes at South Creek. With an identical model structure and an identical 
value describing the rainfall-runoff nonlinearity, this shows quantitatively that for a unit rainfall input 
(sampled on a sub-hourly basis), the basin affected by tropical cyclones produced flashier stream responses 
in comparison to that only affected by localised tropical thunderstorms. 
 
Key words continuous-time model; data-based mechanistic model; experimental catchment; surface-
groundwater interactions; tropical cyclone 

 

INTRODUCTION 

Experimental catchment studies have shown that rainfall-runoff systems within the humid tropics 

can be some of the most responsive of any global region (Gilmour et al., 1980; Elsenbeer & Lack 

1996; Bonell, 2004; Chappell et al., 2006). The very flashy nature of these catchment systems 

heightens the risk of downstream flooding, accelerates soil erosion, and gives a greater sensitivity 

to soil disturbances during forestry, agriculture or civil engineering operations. Improving our 

quantitative knowledge of how to simulate these hydrological systems and attribute the causes of 

the flashy nature is, therefore, fundamental to progress in forecasting floods in headwaters, 

quantifying the dynamic behaviour of erosion and linking land-use change to environmental 

impacts within dynamic simulation models.  

 The first research basins or ‘experimental catchments’ to be established in a cyclone-prone 

part of the humid tropics were the South Creek and North Creek basins near Babinda in northeast 

Queensland, Australia (Bonell and Gilmour, 1978; Queensland Government, 2008). Earlier 

rainfall-runoff studies in the humid tropics (Dagg & Pratt, 1962; Pereira et al., 1962) were 

undertaken within areas not directly affected by tropical cyclones. Tropical cyclones are synoptic-

scale low pressure systems with no fronts, occurring over tropical and subtropical waters with 

organised thunderstorm activity (McGregor & Nieuwolt, 1998). Parts of Australia, the Philippines 

and islands in the Caribbean and western Indian Ocean, including Madagascar are regularly 

affected by these systems. Other land areas of the humid tropics, e.g., Borneo Island, equatorial 

Africa and Brazil are normally free from cyclone tracks. In these areas the short-term behaviour of 

rainfall is usually dominated by the effects of individual convection cells, i.e., local thunderstorms 

(McGregor & Nieuwolt, 1998). The very flashy nature of the catchments in northeast Queensland 

has been attributed, often qualitatively, to the presence of tropical cyclones (Bonell and Gilmour, 
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1978; Gilmour et al., 1980; Bonell, 2004; Howard et al., 2010). Over 40 years since these 

experimental catchments were established, objective methods for analysing rainfall-runoff time-

series have improved dramatically (Young et al., 1997; Box et al. 2008; Young, 2008, 2011). 

Consequently there is an incentive to re-examine time-series data collected by these studies to see 

if new modelling methods are able to quantify the role played by tropical cyclones in the 

generation of faster streamflow responses in comparison to those produced by localised tropical 

thunderstorms.  

 The publication of findings from earlier East African and these Queensland studies were 

partly responsible for stimulating the establishment of many more experimental basins throughout 

the humid tropics (see the review of Bonell, 2004). We would suggest that if basins exist 

elsewhere in the humid tropics differing from northeast Queensland only in respect of an absence 

of tropical cyclones, then new insights into the hydrological impact of these climatic disturbances 

might be gained by comparative analysis similar to the approach taken by traditional ‘paired 

catchment’ studies. 

 This study has two key objectives: 1) to derive objective numerical characteristics of the 

rainfall-runoff system in the humid tropics in a period affected by tropical cyclones and another 

system similar in all respects, except for the absence of tropical cyclone activity, and 2) to use 

models with the least number of model parameters, to constrain simulation uncertainty and thereby 

allow more robust hydrological and hydro-climatic interpretations of the observed differences 

between the rainfall-runoff characteristics of the two micro-basins. 

 

METHODS OF MODEL AND PARAMETER IDENTIFICATION 

Within this study we identify the structure of rainfall-runoff models by following a three-stage 

DBM approach or philosophy, where DBM means data-based mechanistic. The first stage of this 

approach is to apply a large range of mathematical relationships to attempt to capture to the 

dynamics of the output variable of streamflow from the input variable of rainfall. Thus the model 

structures identified are based on those that can describe the dynamics between the observed input 

data and observed output data; hence the models can be defined as data-based. This first stage is 

undertaken without making any a priori assumptions about the functioning of the hydrological 

system. Thus there are no assumptions about the quantities of overland flow relative to subsurface 

flow, which can never be defined precisely even with direct observations from localised runoff 

plots (Chappell et al., 2006). Similarly, there is no assumption that subsurface flows can be 

described by the Richards Equation, as many hillslope hydrologists this to be inadequate given the 

acknowledged role of flow within soil macropores (Kirkby, 1988). The second stage of the DBM 

approach involves the rejection of as many of the identified models as possible based upon purely 

mathematical-statistical criteria. This involves model rejection based upon: a) an unacceptable 

degree of correspondence between the observed and simulated streamflow (i.e., poor simulation 

efficiency), b) an unacceptable degree of over-parameterisation (i.e., rejection of models that are 

more complex than can be warranted by the information contained in the observations), and c) the 

failure of various mathematical diagnostic checks, e.g., models exhibiting unstable behaviour. 

Indeed many physics-based catchment models should be rejected on the basis of tests of over-

parameterisation, but such tests are rarely undertaken and consequently underlying mathematical-

statistical problems can remain uncorrected. The third and final stage of the process is then the 

rejection of mathematically acceptable DBM models that do not have a feasible hydrological 

interpretation. For example, a DBM model of streamflow that is a combination of one rainfall-

runoff pathway that adds water to stream and one that removes it, may be valid statistically, but is 

not considered consistent with perceptual models of runoff generation systems. DBM models 

accepted as having a hydrological interpretation can then be defined as mechanistic and therefore, 

described as data-based mechanistic models. This approach of building hydrological understanding 

by falsification of models is consistent with the scientific method developed by Popper (1959), and 

thereby differs from the approach used within most physics-based catchment modelling studies 

that start with the identification of pertinent scientific laws. 
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 Modelling methods based on transfer functions (Box et al., 2008) have proved to be very 

efficient at capturing the dynamic relationships between rainfall and runoff (i.e., streamflow per 

unit catchment area) over a range of climate, geology and scale (Jakeman et al., 1993; Young & 

Beven, 1994; Chappell et al., 2006; McIntyre et al., 2011; Ockenden & Chappell, 2011). As a 

result, the central mathematical method used in the first stage of our modelling is transfer function 

identification. The key procedure leading to the efficient identification of a transfer function is the 

parameter identification routine. Here we use the latest version of the Refined Instrumental 

Variable (RIV) method (Young, 2008), where: a) the observed data are initially pre-filtered to 

remove high-order noise (i.e., dynamics much shorter than shortest time constant of the system: 

Young, 2011) that effects the identification of the true model structure, and b) the covariance 

matrix (Box et al., 2008) is used explicitly to find the most robust model with least uncertainty. 

The software to identify transfer function parameters using the RIV method forms part of the 

CAPTAIN Toolbox (Taylor et al., 2007).  

 Most rainfall-runoff models based on transfer functions historically have been discrete-time 

dynamic models. Discrete-time dynamic models describe a system using difference equations e.g., 

yt=axt-1 (Box et al., 2008) and are very fast and easy to solve. Continuous-time dynamic models by 

contrast describe a system using differential equations (Box et al., 2008). These models are 

generally more difficult to estimate, however, they produce more reliable model parameter 

estimates where the system dynamics are very fast, i.e., where the dynamics are nearly as fast as 

the sampling interval (or time-step) of the data. More recent developments with the CAPTAIN 

Toolbox have led to significant improvements in the continuous-time versions of the RIV 

identification routines, e.g. the RIVCBJID algorithm (or Refined Instrumental Variable 

Continuous-time Box-Jenkins IDentification algorithm). As the sampling interval for the South 

Creek streamflow data is 15 minutes this may be relatively close to the recession time constant of 

the fastest component of the rainfall-runoff response in this tropical cyclone region, and thus 

makes use of continuous-time models preferable for this study. 

 Previous rainfall-runoff modelling using transfer functions has demonstrated the value of 

capturing the nonlinear aspects of the rainfall-runoff response in addition to that component 

captured by the transfer function. Within this study we capture the nonlinearity using power term p 

within the store-surrogate sub-model, SSSM (Young & Beven, 1994; Chappell et al., 1999a), 

where the normalised effective rainfall (that incorporates the nonlinearity effects) is defined as: 

 

                                           
  

     
                 

                                    (1) 

 

and r is the observed rainfall at each time-step, qt-1 is the observed discharge at the previous time-

step to that for the observed rainfall (which is a measure of the relative catchment wetness that 

causes the nonlinearity in response) and reff is the calculated effective rainfall.  

 To ensure that the rainfall-runoff dynamics through several storms are analysed, the methods 

are applied to a wet period with a continuous sequence of 8640 data points. The South Creek 

rainfall-runoff data are available at 15 minute intervals throughout a period of regular cyclonic 

activity over the three months of December 1990 to February 1991; where the 8640 data points 

equate to 90 days of contiguous data. Data were available at a higher sampling resolution of 5 

minute intervals for the comparison basin in a tropical region not affected by cyclones. Here the 

8640 data points equate to 30 days of contiguous data including more than ten storm-events. Data 

sampled at a high frequency are necessary for the identification of the most reliable models of 

rainfall-runoff response where hydrograph recessions were expected to be very rapid. 

 

CHARACTERISTICS OF THE EXPERIMENTAL CATCHMENTS, HYDRO-CLIMATE 

AND MONITORING SYSTEMS  

The South Creek Experimental Catchment is 0.257 km
2
 in area, was instrumented in 1967 and lies 

on steep slopes covered by natural forest (i.e., lowland tropical rainforest) on Wyvuri Holding 
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close to Babinda town, Queensland (Fig. 1a; Queensland Government, 2008). The discharge was 

derived from measurements of water-level made using a capacitance probe installed at a 

compound V-notch weir at 17
o
 20’ S 145

o
 59’ E. The lower section of the weir incorporated a 90

o
 

thin-plate V-notch, while the upper section a 120
o
 V-notch (Fig. 1b). The rainfall was measured in 

a forest clearing adjacent to the micro-basin using a tipping-bucket raingauge. In addition to the 

rainstorm characteristics, the key catchment factors that may regulate fast runoff pathways are 

likely to be the slope angle and subsoil hydraulic conductivity (Bonell, 2004). The South Creek 

basin (Fig. 2) has steep slopes of around 19
o
 (Bonell et al., 1998) and a subsoil with a relatively 

high saturated hydraulic conductivity (Table 1).  

 The soil type dominating within the South Creek basin is a Kandosol (Bonell, 2004). By 

definition a Kandosol is a soil that is not a Hydrosol but has all of the following characteristics: a) 

a B2 soil horizon in which the major part is massive or has only a weak grade of structure, b) a 

maximum clay content in some part of the B2 soil horizon which exceeds 15 %, c) no tenic B 

horizon, d) no clear or abrupt textural B horizons, and e) is not calcareous throughout the solum or 

below the A1 or Ap horizons or to a depth of 0.2 m if the A1 horizon is only weakly developed 

(Isbell, 2002).  

 The Baru basin was chosen for comparison with the South Creek basin as it is also covered by 

a Kandosol, when re-classified according to the Australian system using data from Chappell et al. 

(1999b). Furthermore, the subsoil horizons in both basins have similar values of field-saturated 

hydraulic conductivity (Table 1). The mean slope angle of approximately 20
o
 is also comparable to 

that of the South Creek basin, and it is also covered by natural forest, namely lowland tropical 

rainforest (Chappell et al., 2006). The basin area is 0.440 km
2
 and therefore the same magnitude as 

the South Creek basin.  

 

  

a)  

 

b)  

 

Fig. 1 The South Creek Experimental Catchment at 17
o
 20’ S 145

o
 59’ E, a) shown with a white cross 

in the foreground and located near to Babinda town visible in the background, and b) gauged with a 
compound V-notch weir. 
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Fig. 2 The topography and drainage network of the 0.257 km
2
 South Creek Experimental Catchment. 

Contours are drawn for every 10 m increments of elevation. 

 

Table. 1 The geometric mean of field-saturated hydraulic conductivity (cm hr
-1

) within the subsoil, i.e., 
B soil horizon of: a) the South Creek Experimental Catchment (from Bonell et al., 1979), and b) from 
70 measurements taken within a 10 km

2
 region containing the Baru basin (Malaysian Borneo).  

_______________________________________________________________________________ 

 

 Strata  South Creek Basin Baru basin  

_______________________________________________________________________________ 

 Upper subsoil 6.25 cm hr
-1

 (10-20 cm depth)
1
 5.7 cm hr

-1
 (15-30 cm depth)

1
 

 Lower subsoil 1.25 cm hr
-1

 (20-100 cm depth)
2
 3.4 cm hr

-1
 (30-60 cm depth)

1
   

_______________________________________________________________________________ 
1From ring permeametry (Talsma, 1969; Bonell et al., 1983; Chappell & Ternan, 1997); 2From well permeametry 

(Talsma & Hallam, 1980) 

 

 

 The Baru basin was gauged with a 120
o
 thin-plate V-notch weir (Fig. 3; 4

o
 58’ N 117

o
 49’ E) 

where water-level was monitored with a PDCR1830 pressure transducer (General Electric 

Company, Fairfield, USA). The catchment rainfall was derived from a Thiessen polygon averaging 

(Shaw et al., 2010) of data from five tipping-bucket raingauges (model: 103755D-04, Casella CEL 

Ltd, Kempston, UK). 
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Fig. 3 The 120
o
 thin-plate V-notch weir used for gauging the 0.440 km

2
 Baru Experimental Catchment 

in Malaysian Borneo (4
o
 58’ N 117

o
 49’ E). 

 

 The key differences between the South Creek and Baru basins relate to the types of tropical 

disturbance (McGregor & Nieuwolt, 1998) that dominate in each region. The South Creek 

catchment is regularly impacted by tropical cyclones, indeed severe Category 4 Tropical Cyclone 

Joy of 22
nd

 – 25
th
 December 1990 lies within the sequence of cyclone events analysed for this stud 

over the period 1
st
 December 1990 to 29

th
 February 1991 (Bannister & Smith, 1993; Bonell & 

Callaghan, 2008). By contrast, the Baru basin is located within an area of Borneo Island that is not 

directly affected by the tracks of tropical cyclones. The resultant lower rainfall intensities of the 

Baru compared to South Creek basin are observable over time scales from minutes for days (see 

Fig. 5 in Bidin & Chappell, 2006). The average annual rainfall at South Creek is around 4000 

mm/yr (Barnes & Bonell, 1996) and is, therefore, much larger than the average of 2862 mm/yr ( 

442 mm standard deviation: 1986-2009) recorded in the vicinity of the Baru catchment. 

 

RESULTS OF THE MODEL IDENTIFICATION 

Using the RIVCBJID algorithm we attempted to identify models of the South Creek rainfall-runoff 

system ranging from first-order structures with a single runoff pathway to sixth-order structures 

with six dominant runoff pathways generating the observed streamflow. For each model structure 

a range in pure time delay between individual rainfall events and a hydrograph response of 

between zero and four time-steps was investigated. This range of scenarios gave a total of 130 

possible DBM models. The best twenty models according to a measure of the simulation 

efficiency (Rt
2
: see e.g., Chappell et al., 2006; Young, 2011) are shown in Table 2.  

 The structure of the DBM models identified are often shown in the form of a triad [den num 

del], where the number of denominators, den (i.e., number of a terms in the lower part of a transfer 

function, e.g., Equation 2), number of numerators, num (i.e., number of b terms in the upper part of 

a transfer function, e.g., Equation 2) and the number of time-steps of pure time delay, del (see 

Equation 2) are shown in square parentheses. The incorporation and magnitude of the nonlinearity 

term is then sometimes shown with a superscript outside the parentheses, e.g., [den num del]
p
 for 

the SSSM nonlinear model. The magnitude of the optimum value for this nonlinearity term (p) for 

the South Creek system was found to be 0.40. While the model with the highest simulation 

efficiency had an Rt
2
 of 0.92605, i.e., 92.6% of the variance in the observed streamflow is 

explained by the model, this sixth order model (i.e., [6 6 0]
0.40

) is over-parameterised in 

comparison to all other models shown in Table 2. Models are said to have become over-

parameterised if the inclusion of additional model parameters has added considerably to the 

uncertainty around the best estimate of the simulated time-series or the values of each parameter, 

while only marginally improving the simulation efficiency. The degree of over-parameterisation is 

shown by the heuristic measure of the Young Information Criterion, YIC, where a low degree of 

over-parameterisation is shown by a large negative number (Ockenden & Chappell, 2011). 
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Table. 2 The best 20 models ranked according to the efficiency measure of Rt

2
 (see e.g., Chappell et al., 

2006; Young, 2011), where den is the number of transfer function denominators (i.e., recession or a 
parameters), num is the number of transfer function numerators (i.e., gain or b parameters), del is the 
number of time steps of pure time delay between rainfall and runoff response, YIC is the Young 
Information Criterion, Rt

2
 is the efficiency measure, BIC is the Bayesian Information Criterion, while 

S2 and condP are two further heuristic measures of model over-parameterisation. 

_______________________________________________________________________________ 

 

den  num  del  YIC       Rt
2
          BIC              S2 100          condP 10 

_______________________________________________________________________________ 

 

 6    6    0     -0.623    0.926    -36235    1.553    9.261 

 5    6    0    -0.851   0.926   -36243    1.553 9.260 

 6    5    0    -2.005   0.926    -36186    1.563    9.256 

 4    5    0    -2.858    0.925    -36164    1.570    9.252 

 6    4    0    -8.017   0.924    -35976    1.603    9.237 

 5    4    0    -2.497    0.923    -35952    1.609   9.234 

 3    4    0    -6.699    0.923    -35886    1.625    9.226 

 4    3    0    -4.572    0.921    -35646    1.670    9.205 

 3    3    0    -6.536    0.916    -35209    1.757    9.163 

 4    5    1    -1.519    0.916    -35161    1.760    9.162 

 4    4    1    -3.315    0.915    -35040    1.786    9.149 

 5    6    1    -5.173    0.915    -34993    1.790    9.147 

 3    4    1    -5.272    0.915    -35002    1.796    9.145 

 3    3    1    -5.603    0.912    -34719    1.857    9.116 

 2    3    1    -7.423    0.910    -34526    1.901    9.095 

 2    3    0    -7.597    0.905    -34130    1.991    9.052 

 2    2    0    -8.732    0.903    -33904    2.045    9.026 

 4    2    0    -11.16   0.891    -32894    2.292    8.909 

 2    2    1    -7.297    0.887    -32620    2.367    8.873 

 1    2    1    -9.214    0.879    -31981    2.549    8.786 

_______________________________________________________________________________ 

 

Consequently, only those models shown in Table 2 that have a highly negative YIC (for this data a 

value more negative than -8.000) were examined in detail. The sixth-order [6 4 0]
0.40

 and fourth-

order [4 2 0]
0.40

 models were subsequently rejected because oscillatory characteristics (i.e., 

complex roots of the transfer function denominator: Young, 2011) were present. This analysis left 

the second-order [2 2 0]
0.40

 and first-order [1 2 1]
0.40

 models as having the best YIC values without 

oscillatory behaviour and a top twenty Rt
2
 value.  

 

TOWARDS A HYDROLOGICAL AND HYDRO-CLIMATIC INTERPRETATION 

In the last stage of the DBM modelling approach the first-order [1 2 1]
0.40

 model was rejected 

because a model with two stores joined in series, that have the same denominator value (and hence 

same time constant), is difficult to explain physically. Consequently this DBM approach indicated 

that the second-order [2 2 0]
0.40 

model (highlighted in bold in Table 2) provides the best descriptor 

of the rainfall-runoff response, even without recourse to the other available statistical measures of 

BIC, S2, or condP.  

 The second-order [2 2 0]
0.40

 continuous-time transfer function between the normalised 

effective rainfall (see Equation 1) and streamflow per unit basin area (q) can be presented in the 

form: 
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 (2) 

 

where bn are the numerator terms, an are the denominator terms,  is the pure time delay and s is 

the Laplace operator. When shown with the RIVCBJID-identified parameter estimates for the 90 

days of South Creek data (using 8640 contiguous values of 15-minute data, with its simulation Rt
2 

of 90.3% and YIC of -8.73: Table 2) this gives: 

 

                
              

                 
    (3) 

 

Because  = 0 for this model (Table 1), the term e
-s

 = 1 and therefore, is not shown. The preceding 

second-order transfer function can be expressed as two first-order continuous-time transfer 

functions in parallel: 

                 
      

        
    

      

        
    (4) 

 

                                 fast pathway       slow pathway                                               

  

The model is decomposed (Young, 2011) into two transfer functions in parallel because this has a 

hydrological interpretation, namely it describes water-flow along two separate pathways, with one 

allowing a response to propagate towards the stream much faster than the other. The key terms 

within the derived transfer functions are more commonly described by the three dynamic response 

characteristics, DRCs (Jakeman et al., 1993). These DRCs are: 1) the time constant or TC, 2) the 

steady state gain or SSG, and 3) the pure time delay, . Hydrologically, the time constant relates to 

the rate of propagation of the response from rainfall to the stream via a particular water pathway. 

These rates of response propagation relate to the speed of pressure waves or kinematic waves (see 

definitions in Rasmussen et al., 2000), not to velocities of water particles (or conservative tracers). 

For a first-order model, the steady state gain of a rainfall-runoff system is simply the simulated 

runoff coefficient (Chappell et al., 2006). Where the streamflow comprises of two separate 

components (from two separate water pathways), then the SSGs can be used to calculate the 

percentage of the total streamflow generated by each pathway (e.g., percentage of streamflow that 

travelled along the fast pathway, Fast%: Equation 5). Lastly, the pure time delay of a rainfall-

runoff system is the delay between a rainfall event and the start of a response in the river 

hydrograph. This delay is typically short within micro-basins, but can be very long within macro-

basins where it often relates to the time for water to travel from headwater channels to a 

downstream gauging station. The DRCs of TC and Fast% are derived directly from the a and b 

terms given in Equation 2, i.e.,  

                                 
  

 
           

 

 
                 

    

         
                (5) 

 

where t is the time-step of the observations (i.e., 5 or 15 minutes for the Baru or South Creek 

data, respectively), SSG1 is the steady state gain of the slow pathway and SSG2 is the steady state 

gain of the fast pathway.  

 Within this study, we focus only on interpretations of the DRCs of the fast hydrological 

pathway. The principal means of this interpretation is a comparison of the DRCs for the South 

Creek rainfall-runoff system with those of a comparison basin. The comparison basin is the Baru 

Experimental Catchment in Malaysian Borneo, where the controls on the rapid runoff pathways 

are similar with respect of slope and soils, but different with respect of the type of tropical 

disturbance (McGregor & Nieuwolt, 1998), namely a hydro-climate dominated by the effects 

tropical cyclones versus one dominated by local thunderstorms. 

 An identical DBM modelling approach was applied to the rainfall and runoff data for the Baru 

Experimental Catchment. This analysis indicated that the optimal model structure was identical to 

that of the South Creek system, namely a second-order model (with an SSSM-nonlinearity).  The 

simulation efficiency (Rt
2 
of 87.6%; Fig. 4) was slightly lower that for the South Creek model. The 



90 

 

magnitude of the optimal value of the nonlinearity term (p) was 0.40, identical to that identified 

for the South Creek system. Furthermore, the proportion of the streamflow associated with the 

faster of the two pathways (i.e., Fast%) was 59.5% and thus similar to the 61.1% for the South 

Creek basin.  

 If the model structure, the proportion of water following each pathway, or the magnitude of 

the nonlinearity term had been markedly different between the two catchments, then hydrological 

interpretation of the time constants (TCs) would have been difficult. This would have arisen 

because of the competing effects of nonlinearity, inertia and pathway proportion on the resultant 

fast response. In the case of the South Creek and Baru comparison of DRCs, only the time 

constants and the pure time delays differed. To show that the differences in the time constant were 

much larger than the modelling uncertainties (from errors in the observations or errors in the 

model identification), uncertainty information estimated by the RIVCBJID algorithm was used to 

select the range of values of a and b terms (Equation 2) within 1000 Monte Carlo realisations. 

Uncertainties on the resultant DRCs were found to be very small in comparison to the differences 

in each DRC between the two micro-basins. For example, Fig. 5 shows the uncertainties in the TCs 

for the optimal model of the South Creek rainfall-runoff system. Most of the 1000 realisations of 

the fast path varied by less than  0.15 minutes around the average of 21.46 minutes (Fig. 5); and 

comparable TC uncertainties were seen with the Baru data.   

 Most critically, the optimal TC (or average TC from the Monte Carlo analysis) of the fast path 

within the South Creek basin was 21 minutes, while it was 75 minutes for the Baru basin. Thus the 

South Creek basin has a quantified flashier rainfall-runoff response in comparison to that of the 

Baru basin. This difference cannot be attributed to the effect of the greater sub-hourly rainfall 

totals in the South Creek micro-basin because of the effects of rainfall-runoff nonlinearity, as the 

models describing the nonlinearity (SSSM) and the magnitude of the nonlinearity term (p) were 

identical for both basins. Equally, the TC differences cannot be attributed to differences in the 

catchment controls, as both basins have similar subsoil permeability (Table 1) and similar hillslope 

angles. 

 
Fig. 4 Observed streamflow per unit basin area (i.e., runoff) from the Baru Experimental Catchment 
over February 1996 (8640 data points sampled every 5 minutes are shown) and that simulated by a [2 2 
2]

0.40
 DBM model. 
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Fig. 5 Number of simulations (y-axis) for each value of time constant (x-axis) produced by 1000 Monte 
Carlo realisations of Equation 2. The upper figure shows the range of time constants for the fast 
pathway (in minutes) and the lower figure the range of time constants for the slower pathway (in days) 
of the decomposed second-order model.  

 

Furthermore, the greater flashiness of the South Creek runoff system is not offset by a longer pure 

time delay, as the pure time delay is 0 minutes for the South Creek basin and 10 minutes (i.e., 2 

5-minute time-steps) for the Baru basin. Indeed, these two DRCs can be combined into a single 

term called the mean travel time,    (Wallis et al., 1989), where: 

 

              (6) 

 

By using this DRC, the difference between the two basins is even larger at 21 and 85 minutes for 

the South Creek and Baru basins, respectively. 

 For purely linear rainfall-runoff systems or where the effects of rainfall-runoff nonlinearity in 

each basin are identical (as here), any differences between the basins in the sub-hourly rainfall 

totals do not affect the flashiness of the rainfall-runoff system (i.e., TC or   ), therefore differences 

in basin flashiness cannot be attributed to differences in sub-hourly rainfall totals. As the only 

marked difference between the two basins relates to rainfall input from different types of tropical 

disturbance, the inference is that another characteristic of the short-term rainfall regime (other than 

sub-hourly totals) may be responsible for the observed differences in TC (or   ). The considerably 

greater magnitude of the b0 term relative to b1 term within the identified transfer functions (e.g., 

Equation 3) suggests that filtered derivative effects may be present within the rainfall-runoff data. 

We are now investigating novel DBM structures that incorporate the filtered derivative of the 

rainfall rate to explore these ideas, and thereby attempt to directly attributed differences in DRCs 

to characteristics of the short-term rainfall regime. 

 

 

CONCLUSIONS 

By using one of the most reliable model identification routines available, constraining model 
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complexities, and by assessing parameter uncertainty, this study has derived a set of dynamic 

response characteristics (DRCs) of the rainfall-runoff system of two tropical micro-basins with 

minimised uncertainty. Fortuitously, the optimal DBM models for both micro-basins (based on the 

criteria of high simulation efficiency and a low degree of over-parameterisation) have: a) identical 

model structures (i.e., second-order transfer functions with SSSM nonlinearity), b) almost identical 

proportions of water travelling along each pathway (e.g., ca. 60% of streamflow derived from a 

fast pathway), and c) an identical value of the term describing the nonlinearity (i.e., p = 0.40). This 

leads to great confidence in the observation that the South Creek Experimental Catchment in 

Queensland, Australia is considerably flashier in its rainfall-runoff response (TCfastpath = 21 

minutes) in comparison to the Baru Experimental Catchment on Borneo Island (TCfastpath = 75 

minutes). This difference in flashiness is not due to differences in catchment characteristics, as the 

basins have similar hillslopes angles, soil types, subsoil permeability and basin areas. These basins 

are however, effected by different types of tropical disturbance (McGregor & Nieuwolt, 1998), 

namely the 90 day period investigated for the South Creek basin is influenced by a sequence of 

tropical cyclones, including the Category 4 Tropical Cyclone Joy (Bannister & Smith, 1993; 

Bonell & Callaghan, 2008), while cyclone tracks do not pass over the Baru basin with local 

thunderstorms dominating in this area (Bidin and Chappell, 2006). Because the DBM model 

structures and values of the nonlinearity term were identical, the difference in rainfall-runoff 

flashiness cannot be attributed to differences in the sub-hourly rainfall totals for these two types of 

tropical disturbance. In other words, this modelling shows quantitatively that for a unit rainfall 

input (sampled on a sub-hourly basis), the micro-basin affected by tropical cyclones produces 

flashier stream responses in comparison to the one affected by localised tropical thunderstorms. 

There are indications that the short-term rainfall characteristics other than sub-hourly totals may be 

responsible for the marked rainfall-runoff differences between these two hydro-climatic regimes 

and we will investigate these further. 
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