vision

Natural Environment Research Council

World-leading discovery science

helps solve

UK water issues

Infrastructure captures

UK variability in hydrological phenomena

range of challenging UK water issues

UK water research infrastructure

Integrated network of smart catchments

 $139 - 174 - 105 \text{ km}^2$

pastoral & forestry pollutants

in flood & drought flows

174 km² Upper Severn

https://www.bbc.co.uk/news/uk-wales-43389895

139 km² Upper Tweed

Nature-based Solution

effects on flood & drought flows

Integrated, real-time sensor-processing network

high-fidelity temporal observations

high-fidelity temporal observations Accurate,

Accurate, complete (high freq + linked + analysed) & precise

Perceived irrelevance

don't see the value for decision making

Overemphasis on precision

folk like simple, qualitative data

Cognitive overload

overwhelming amount of data

Resource constraints

perceive high cost (collection and analysis)

Difficulty in interpretation

don't have the skills to interpret

Technological barriers

lack technical expertise of tools

Historical context

institutional / cultural resistance as apparently not needed before

Published examples of use

high-fidelity temporal observations

MISO-models

Multiple-Input-Single-Output

Simple example: real-time monitoring of +2 phenomena to explain/attribute dynamics in one variable

forecast 3 river levels (independently)

upstream river level

Smith, Beven & Horsburgh (2013) QJR Meteorol Soc 139: 340-349

Stream temperature

from

Solar radiation

Soil temperature

Majerska, Osuch and Wawrzyniak (2014) Science of The Total Environment 923: 171298

Fig. 3. Time series of a) outputs from the MISO model in the form of water temperature explained by ground temperature and total radiation and b) observed and simulated water temperature in the 2020 summer season with MISO.

real-time raw water treatment control Train dataset Test dataset $A1^{3} +$ $Al^{3+}SBS$ 14 12 NTU_{in} pH_{in} 10 Dose (m³/day) NH_4^+-N ON Chl Chl-a Alage 6 **CFU** ALK Hardness ML of high-freq TC water quality Al^{3+} NaClO gives reduction $Al^{3+}_{\;SBS}$ in coagulant usage 0.0 0.5 1.0 400 800 1807 1200 1600 Al^{3+} Time (day)

INPUT: water quality variables (normalised)

Shenzhen treatment works, China

Wang et al. (2025) Water Research 280: 123541

MIMO-models

Multiple-Input-Multiple-Output

complex example: real-time monitoring of +2 phenomena to explain/attribute dynamics in +2 variables

Nasir & Weyer (2016) Control Engineering Practice 52: 70-92

SIMO-models

Single-Input-Multiple-Output

simple example: compare dynamics of +2 variables partly controlled by the same phenomenon

NO₃-N dynamics interpretation with reference to rain-runoff & rain-DOC dynamics

NERC Brianne micro-basins (mid-Wales)

Chappell 2024. Frontiers in Environmental Science, 12: 1473726

Many more opportunities enabled...

scientist training in AI formulation

bridging divide between modellers and field scientists

greater appreciation of field monitoring in problem solving

Solutions to mitigate effects of climate change on flooding & water shortage

Identifying behaviour of water pollutants & effective mitigation measures

help solve

UK water issues

Building evidence base on efficacy of Blue-Green Infrastructure

Optimising water solutions for food production, energy systems and nature recovery

Flood & drought forecasts better informed by state of catchment

Harnessing digital innovation for smarter water management

depends on your personal commitment

to an aspect of

designing deploying testing maintaining

FLOODS & DROUGHTS RESEARCH INFRASTRUCTURE

If you don't have high-fidelity temporal observations

Aliasing

American idiot **Africa**

songs where only every other beat missing

thank you

chiefscienceadvisor-fdri@lancaster.ac.uk

