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Value of hydrological dynamics to attribute (interpret)
high frequency water quality dynamics using System
Identification Theory / Tools

(1) Need continuous water quality observations that are ‘accurate’

(2) Need System Identification Tools to cope with intrinsically
noisy environmental data

(3) Need continuous discharge observations synchronous with WQ
observations

If meet these criteria for  SIMART monitoring



(1) Need continuous water quality observations that are ‘accurate’

i.e., (a) free from disinformative artefacts (see e.g., Beven & Westerburg 2011 Hydrol Process)
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weekly clean proved insufficient

Bi-weekly cleaning (brush 10% HCI) reduce
step (eg, < 0.7 mg/L DOC) followed by drift
correction




(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not

under-sampled (‘aliased’) e
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(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not
under-sampled (‘aliased’)
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which changes terms that characterise flood
chemograph shape (ie, Dynamic Response
Characteristics, DRCs, fitted to observations)

e.g., TC = time constant
(residence time of response)

eg, TC,, of rainfall to DOC ,,p for LI7 stream
where sampling halved progressively

Jones et al (2014 Environ Sci Tech)



(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not
under-sampled (‘aliased’)

SI-method to identify minimum sampling
rate before DRCs shift significantly

need System ldentification (SI) Tools
capable of high efficiency and high
parsimony models

high R,? and strong -YIC,
particularly for highest res data
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(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not
under-sampled (‘aliased’)

SI-method to identify minimum sampling
rate before DRCs shift significantly
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(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not
under-sampled (‘aliased’)

SI-method to identify minimum sampling
rate before DRCs shift significantly

1.3(ATC)
Chappell et al (2017 Water Res)

consistent with but more reliable
than existing

1/6(TC) of Young (2010 BHS)
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(1) Need continuous water quality observations that are ‘accurate’

i.e., (b) observations not

under-sampled (‘aliased’)
Chappell et al (2017 Water Res)

site variable sampling interval
Tacc (mln) Tdriﬁ (mln)

Trawsnant H' 152 190
Hafren H" 600 750
Baru H" 110 160
Blind Beck H 105 120
Pang at Tidmarsh H 180 225
Pang at Buckleberry H" 120 300
Trawsnant DOC 240 300
North Fork NO3-N 300 600

i.e., 1.8 -10 hours



(2) Need System Identification Tools to cope with intrinsically noisy environmental data

e.g., RIVC algorithm

Refined Instrumental Variable Continuous-time
Box-Jenkins identification algorithm

Model estimation involves iterative pre-filtering of
signals to remove high frequency noise inherent
within environmental data (even within quality
assured data) that affects identification of accurate
parameter values (Jones et al 2014 Environ Sci Tech)

Freely available at
https://wp.lancs.ac.uk/captaintoolbox

THE CAPTAIN TOOLBOX
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The Computer-Aided Program for Time-series Analysis and Identification of
Noisy Systems (CAPTAIN) Toolbox



(3) Need continuous discharge observations
synchronous with the WQ observations

I , Concentration
g @ dynamics strongly
associated with storm
changes in waterflow
dynamics (eg,
channel discharge)

eg, Jones & Chappell
(2014 Hydrol Res) H*
study

thus should measure discharge to attribute (and
simulate) concentration dynamics
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(3) Need continuous discharge observations
synchronous with the WQ observations

7
3
5
C-Q relationships hysteretic; with loops =
very different between storms events E 4
£
Ty
eg, Jones et al (2014 Environ Sci Tech) 7 A
DOC study §
O

Thus should measure discharge (and
concentration) continuously

e.g., L16 catchment 15-min data
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(3) Need continuous discharge observations
synchronous with the WQ observations

Similarly accurate derivation of
discharge required
i.e., use a control structure

(stable calibration & with measurement
at point of critical flow)
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If meet these criteria for S MART m O n ito ri ng

Visually contrast timing of chemical flux against reference of water flux:
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If meet these criteria for S MART m O n ito ri ng
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87-99% of dynamics in H*
concentration explained purely
by dynamics in streamflow (Jones
& Chappell, 2014 Hydrol Res)
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15-min observations through contiguous storms

e.g., 2" order CT-TF model for a simulated
period for streamflow to H* concentration in
the LI3 basin, Llyn Brianne



If meet these criteria for S MART m O n ito ri ng

Quantify dynamics:

71-75% of dynamics in H* load
explained purely by dynamics in
rainfall (Jones & Chappell, 2014

Hydrol Res)

15-min observations through contiguous storms

LI6 H+ load {img/15 min)

600

200
400 F
300} r
200} :
1 |
! | .
100 B |'Hi|lllﬂ'| [ i \
'] oy
:’J W lors, 3, 'HJJJ 'L“Q__ ! 3

400 402 404 406 408 410 412 214
Julian day since 1/1/12 {dashed line=modelled)

e.g., 2" order CT-TF model for a simulated
period for rainfall to H* load in the LI6 basin,
Llyn Brianne



If meet these criteria for S MART m O n ito ri ng

Relative to water flux, more DOC

Quantify dynamics: .
flux in faster component

Jones et al (2014 Environ Sci Tech) DOC study

site DOC; oap/Q model” YIC R} TCg,, (h) TCyq,y (h) fast %

LIS Feb load [2 —5.27 0.870 509 + 0.14 46 + 21 (47.4) 14
Feb Q (2 22] —6.35 0.883 348 + 0.16 63 + 120 @ 32
May load [2 @ —8.52 0.972 1098 + 0.13 372 £ 94 349 + 6.6
May Q 2 %1] —9.46 0.949 7.77 + 035 441 + 120 6.5 + 27

Greater pure time delay
of DOC mobilisation in

spring

Greater DOC flux
per unit rain
input in spring



Current applications of
SMART monitoring
approach

e.g., NFM co-benefits

turbidity (SSC)

[BO RX3000 Statien
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