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1 | THE DEVELOPMENT OF PERCEPTUAL MODELS FOR CATCHMENT
RESPONSES

In the first edition of Rainfall-Runoff Modeling: The Primer (Beven, 2001a) a number of successive stages in the model-
ing process were distinguished. The first stage was considered to be potentially the most important. That was the speci-
fication of a qualitative perceptual model of how the catchment of interest might function. This concept was first
outlined in the context of hydrological models by Beven (1987) who suggested that this would be something that would
be personal to each hydrologist. This was expanded in Beven (2001a) as “the perceptual model is the summary of our per-
ceptions of how the catchment responds to rainfalls under different conditions or, rather, your perceptions of that response.
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A perceptual model is necessarily personal. It will depend on the training that a hydrologist has had, the books and articles
he or she has read, the data sets that he or she has analyzed and, particularly, the field sites and environments of which he
or she has had experience” (p. 3/4). It is therefore, a form of qualitative mental model that can incorporate far more com-
plexity than what could, later in the modeling process, be represented in mathematical and computational form in
order to make quantitative predictions.

The process of developing a perceptual model is a matter of experience. It should therefore, be expected to change
over a time and to vary from person to person. There is a good example of this in the changing nature of the perceptual
models for Maimai in New Zealand that has been recorded in the articles of Mosley (1982), Sklash et al. (1986), and Jeff
McDonnell (Brammer & McDonnell, 1996; McDonnell, 1990; McGlynn et al., 2002). One example of how the develop-
ing perceptual model did feed into the structure of a simulation model is for the Ringelbach catchment in the Vosges,
France (Ambroise et al., 1996; Freer et al., 1996). Perceptual models have also been proposed as the basis for model
evaluation by Beven (1989a), Seibert and McDonnell (2002), and Vaché and McDonnell (2006) and for the development
of hydrological classification schemes (e.g., Black, 1997; Sawicz et al., 2011; Wagener et al., 2007). This type of classifica-
tion also underlies the definition of hydrological response units (HRUSs) or hydrological similarity units (HSUs) in many
semidistributed hydrological modeling frameworks and land surface parameterizations (albeit that this often only have
a single conceptual structure with different parameter sets in the different HRUs).

In one sense the perceptual model can be considered as a set of hypotheses about hydrological functioning
that should be tested as relevant for specific applications. Experiments can be designed to test specific process
hypotheses, indeed the changing nature of experimentation at the Maimai catchment, particularly the use of iso-
tope data, was fundamental to the change of perceptual understanding there. Such experimentation can also be
exploratory, as in the type of abductive reasoning to create hypotheses about functioning discussed in Baker (2017).
The use of dye tracer experiments at soil core, plot, and hillslope scales, albeit often destructive, have revealed the
ubiquity of preferential flows in soils. That has resulted in preferential flows as an essential element of many per-
ceptual models, but in this case without satisfactory incorporation into models that can be used to demonstrate
importance at catchment scales (see Beven, 2010, 2018; Chappell, 2010; Jones, 2010). In groundwater systems,
flows in fracture systems are also often part of the perceptual model for an aquifer model (particularly in karst
systems) but direct observations of flows in rock fractures has often been limited to small scales, so aquifer model-
ing is often limited to integral conceptual approaches (e.g., Hartmann et al., 2014; Rahman & Rosolem, 2017) lac-
king evaluation against observed fracture flows.

A quick search of the wider scientific literature shows that perceptual models are used in a variety of different fields,
particularly, of course, in psychology and cognition (e.g., Dosher & Lu, 2017;). In hydrology, the idea has been used
quite widely, particularly in teaching, but is rarely formally taken into account when defining a predictive model (and
we have seen plenty of past perceptual model failures when an analysis starts with an inappropriate procedural model,
see discussion in Beven, 2020b, 2021). Even where modeling systems allow a wide variety of different components
(e.g., MMS, CMF, SUMMA, SuperFLEX, and MARRMOT) there has been a tendency to be guided by goodness of fit,
rather than any evaluation against a perceptual model (see the recent optimization of model structures in Spieler
et al., 2020). SUMMA (Clark et al., 2015a; Clark et al., 2015b) has the stated aim of providing a unified framework for
different process representations, noting that “improvements in model fidelity require a sagacious choice of both process
parameterizations and model parameters” (Clark et al., 2015b, p. 2538) but does not provide any explanation as to how
to be sagacious.

2 | PERCEPTUAL MODELS AND HYDROLOGICAL COMPLEXITY

The general lack of consideration of any explicit perceptual model is somewhat perplexing but there would appear to
be a number of reasons why this might be the case. The first is the mismatch between bottom-up perceptual complexity
and the simplicity of most hydrological models (and we include in that description the so-called physically based
models which may be computational demanding but are still based on gross and incorrect simplifications of the physics,
for example, Beven, 1989b, 2018; Beven & Germann, 2013). As a community we have avoided thinking deeply about
how that particular conundrum might be resolved. In fact, when we know that we would ideally want models that are
robust in calibration (and which should therefore, be parsimonious in their parameterization), it is far easier not to
think about the problem at all, but rather take a more top-down approach to defining hydrological functioning as repre-
sented by model structures from observed behavior at the catchment scale (e.g., Chappell et al., 2006; Gnann
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et al., 2021; Ockenden & Chappell, 2011; Sivapalan et al., 2003; Wagener et al., 2021; Young, 2003, 2013; Young &
Beven, 1994). An example of such an approach is the study of Wrede et al. (2015) who defined different models within Super-
FLEX for three subcatchments of the Attert catchment in Luxembourg where the geological characteristics suggested quite
different perceptual models. This top-down approach is, however, somewhat limited by the long-standing problem of a lack
of agreed ways of linking dynamic response characteristics (DRCs) identified from input-output behavior to specific
hydrogeological classifications of catchments (Addor et al., 2018; Gnann et al., 2021; Kratzert et al., 2019).

If all we are interested in is reproducing past streamflow observations, then experience suggests there will be many
model structures and parameter sets that will provide more or less equivalent fits to the available streamflow observa-
tions. Indeed, purely data-based and machine learning models might well provide better fits to data than any explicit
parameterization of the component hydrological processes (Beven, 2020a; Kratzert et al., 2019). This has been referred
to as the equifinality problem (see Beven, 1993, 2001b, 2006a; Beven & Freer, 2001). Furthermore, the number of
acceptable models will increase if we start to take proper account of uncertainties in the hydrological observations,
rather than optimizing models as if these data were certain (e.g., Beven, 2019; Beven & Smith, 2015).

While there are definitely applications where modeling similar conditions to those in past data might be useful, a
more important question is what can we say about changed conditions in the future; not only in the inputs (rainfall,
net radiation, etc.), but also in the catchment characteristics of vegetation, soils, and channel form? Will a calibrated
model properly simulate the process changes expected under different climate forcing (even without a change in basin
characteristics)? How should the (already uncertain) parameters be changed to reflect future land management effects
or other changes in the catchment that may impact on the functioning of surface and subsurface flow processes (see,
e.g., Buytaert & Beven, 2009)? Will a predictive model that is consistent with the perceptual model do better in an
assessment of change than just using a model that gives the best fit to past data? There may also be a question of how
these simulated changes, especially if large scale, might feedback into regional climate models. The land surface compo-
nents of these climate models are still generally different from those used in catchment hydrological models, but these
questions are beyond the scope of what we want to consider here and are the subject of continuing research elsewhere
(e.g., Fowler et al., 2016, 2018).

3 | THE VALUE OF A PERCEPTUAL MODEL

Underlying these questions is the issue of whether we might be able to do better in simulation (past, present, and
future) if we have a better perceptual model of the hydrology of a catchment area. There are certainly examples of
where hydrologists have not distinguished themselves in this respect. In a couple of recent articles, the historical con-
text of two perceptual models of catchment-scale rainfall to streamflow response is discussed, where the concepts have
been decidedly befuddled over time. The first is the concept of time of concentration, classically defined as the time of a
drop of water to flow from the furthest point of a catchment to the outlet (including in WMO, 1974) but which, in its
practical application, should really be defined in terms of wave celerities (Beven, 2020b). The second is the infiltration
theory of the 1930s and 1940s that has been applied widely in computer models, but which was realized even during
this “era of infiltration” to have decidedly shaky foundations (Beven, 2021).

The infiltration theory, as a perceptual model, is usually assigned to Horton and his article of 1933. At the
time, it was adopted with enthusiasm by others as a useful and more accurate tool for estimating “surface runoff’
for engineering design purposes (e.g., Cook, 1946). Hydrologists of that time did not, of course, have the advantage
of environmental tracer information that suggests event hydrographs often comprise of a large proportion of pre-
event water, something that later caused a fundamental change in many perceptual models. They did, however,
recognize that “direct runoff” to the hydrograph could be made up of an unknown mix of surface and subsurface
flows. Horton (1942) got round this problem by suggesting that fast subsurface stormflow would likely be turbu-
lent rather than a laminar subsurface flow and could be called “concealed surface runoff’ and therefore analyzed
in the same way. The perceptual reasoning of the era of infiltration therefore became somewhat circular, justifying
the application of a procedural model useful for quantitative prediction but with (generally) an incorrect percep-
tual basis. It is difficult to say that we are not subject to similar circularities of reasoning in applications of
models now (especially when fitting to past streamflow observations is allowable). Hence the importance of trying
to be rigorous about defining and testing an appropriate perceptual model and using it to inform quantitative pre-
diction. This can be extended to include not only knowledge about the processes, but also about the uncertainties
in the modeling processes (e.g., Westerberg et al., 2017).
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So in what way might a rigorous and realistic perceptual model be useful? There are a number of ways that can be
suggested.

« To put more focus on the understanding of observable hydrological processes as a way of improving predictability.
« To provide some evaluation of the meaning and value of what is observable.

« To try harder to get the “right results for the right reasons.”

« To evaluate predictive models for consistency with available hydrological understanding.

We will return to this issue of consistency after considering a particular perceptual model.

4 | APARTICULAR PERCEPTUAL MODEL OF CATCHMENT RESPONSES
IN CUMBRIA

So consider a perceptual model for the types of catchment in Cumbria, North-West England that are the subject of a
current project on Natural Flood Management (i.e., nature-based solutions for reducing flood hydrographs). These
gauged catchments range in scale from less than 1 km? to more than 2000 km®. These catchments are mostly covered
by grassland, with both rough upland and improved pasture, with small areas of cultivation in the larger valleys. They
have steep slopes in the headwaters, but the depth of subsurface flow varies widely from being confined to the topsoil
to deep flows within permeable rocks. Glacial till (diamicton) is present in most catchments, which has led to the devel-
opment of gleyed soils and perched water-tables where they overlay permeable rocks. The climate is humid temperate,
with average rainfalls ranging from 1,000 to 4,000 mm/year. There is currently an extensive programmer of tree plant-
ing, and other natural flood management strategies such as leaky dams and off-line storages being deployed, some with
new monitoring at the micro-catchment (<1 km?) scale and “feature-scale.”

So here is a situation where it would be useful to be able to describe the response under current conditions and also
what might be the case under changed (post-intervention) conditions; to permit effective decision making as to how
best to invest in future, more widespread mitigation strategies. Consider what a perceptual model of the processes of
catchment response might look like for these types of catchments. The following might be considered some of the key
elements of such a perceptual model (PM) for these catchments.

PM1: The structure of the vegetation, and its seasonal changes, might be important in controlling the volume of water
that reaches the ground surface. This will be through rainfall interception by the canopy and subsequent wet-canopy
evaporation; and the effects on snow accumulation and albedo during melt periods. In windy areas, such as is often the
case for large storms in North-West England, evaporation from rough, wet, canopies can be very sensitive to even small
local humidity deficits resulting in the potential for some surprisingly large rates of loss (Page et al., 2020). There will
also be a distribution of rainfall intensities associated with the type of rainfall event, and the redistribution of the net
rainfall by the local vegetation canopy. Particularly for deciduous woodland these factors will change with season.
While the throughfall component will, in general, have a lower average intensity than the rainfall above the canopy,
stemflows might lead to local concentrations of input that might be important in exceeding local infiltration capacities
or inducing bypassing flow in the soil (e.g., Johnson & Lehmann, 2006; Tischer et al., 2020).

PM2: That variability in input intensities will interact with surface conditions to affect infiltration. Robert Horton suggested
that infiltration capacities of the topsoil were controlled by surface processes (compaction by raindrops and traffic, mobiliza-
tion of fine particles that would block larger voids, etc., see Beven, 2004a) and that this also meant that we should expect
infiltration capacities to vary over time, both seasonally and between events (see also Chappell & Lancaster, 2007, in North
West England). Horton argued strongly that infiltration is not generally profile controlled, even though his equation has
been shown to be equivalent to a solution to the Darcy-Richards equation after making some specific assumptions about
the soil moisture characteristics (e.g., Eagleson, 1970). Temperature itself will have an effect on infiltration capacities
through changes in water viscosity. Changes due to agricultural operations might be more significant in some of the arable
areas of the larger catchments considered here, perhaps less so for the established grass covered areas. Zaslavsky and
Sinai (1981) also discussed the possibility of poorly measured layering close to the soil surface and below leading to down-
slope flow in unsaturated soils, referred to since as a “thatched roof effect”’. There may be connectivity thresholds for overland
flow pathways, including effects of runoff-runon phenomena (Bonell & Williams, 1986) and feedbacks between depths of
overland flow and infiltration rates (Dunne et al., 1991). In some circumstances, infiltration rates might be limited by air
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pressure effects (e.g., Dixon & Linden, 1972). Horton already recognized the importance of cracks and macropores in all-
owing the infiltration of water and the escape of air to the surface (Beven, 2004a).

PM3: Where overland flow, by either infiltration excess or saturation mechanisms, is produced, the concentration of
water in micro-rills will be more efficient at shedding water downslope. Some of the slopes in the micro-catchments of
interest here have natural pipes in areas of peat soils. These flowlines are evident from depression lines with collapse
holes and in the vegetation patterns at the surface, with species indicators of wetter conditions (e.g., the soft rush,
Juncus effuses). Models often make the convenient assumption that overland flow can be treated as a sheet flow. This
also dates back to Robert Horton who, following a suggestion of Leroy Sherman, made use of a representation of a unit
width hillslope in order to apply the Manning equation to overland flow, with the hydraulic radius approximated as the
slope width (Horton et al., 1934). This allowed Horton to make his theoretical advances in relating overland flow to ero-
sion in his seminal 1945 article, but the sheet flow assumption is not very realistic on natural surfaces (Emmett, 1978).
In some cases the channelling might be the result of co-evolutionary processes (e.g., the piping that can develop in dis-
persive soils) or external forcing, such as the piping in some upland peat soils that is thought to be initiated by desicca-
tion cracking in rare dry summers (Gilman & Newson, 1980; Jones, 2010).

PM4: Once water has infiltrated into the soil then the pattern of flow through the unsaturated zone is likely to be highly var-
iable, as a result of variability in initial soil moisture storage, heterogeneity in soil characteristics, the potential for fingering
or Stokesian film flow rather than capillary potential driven wetting fronts, and the potential for flow through macropores.
The macropore pathways will be discontinuous, which might lead to local zones of saturation and displacement of stored
water into other faster pathways. There is also evidence that fingering and film flows can also induce exchanges with and
displacement of stored water, and that given a sufficient depth of soil and unconsolidated materials, drying fronts might
overtake local wetting following the end of rainfall, before the saturated zone is reached. Not all flow through the unsatu-
rated zone will be vertical, there may be downslope flows according to the structure and macroporosity of the soil. We would
expect capillary forces to be important in retaining water in the soil matrix that might later be used in transpiration, while
capillary rise might be important in sustaining water supply to roots in some cases. We might also expect that roots might
grow toward more readily available water more quickly than water can move to the roots under dry conditions. Exchanges
with relatively immobile water might be important in controlling the travel time distribution through the unsaturated zone.
PMS5: In the saturated zone, there may be local areas of perched and local saturation that may be disconnected from the
stream. These may be above the till or in zones of higher permeability bedrock and might be important sources of water to
trees under dry conditions. This threshold-type connectivity may in part depend on the form of the hillslope; convergent
slopes will be more likely to stay connected for longer, and perhaps produce saturated areas at the surface than divergent
slopes (another type of connectivity threshold). Subsurface preferential flow pathways might not follow the surface topogra-
phy. This is particularly true in the limestones of North West England where karst features may also lead to transfers of
water across catchment divides defined by surface topography. Again, not all water in the saturated zone is expected to be
readily mobile; relatively immobile water may affect the travel time distribution of water elsewhere in the system.

PM6: Return flow to saturated areas and the stream riparian zone might be important, particularly in areas with signifi-
cant valley bottom infill, or where there are returning contributions from the permeable solid geology. Areas of
exfiltration from the subsurface to the stream might be subject to significant variability in space and time resulting from
heterogeneities in permeability characteristics in the immediate zone around the channel (including fracture zones in
the underlying geology and, at larger scales, the structure of floodplain sediments), as shown, for example, by Késer
et al. (2014) in North West England. It has long been recognized that the near-stream areas can be an important source
of overland flow from exfiltrating water, especially where the hillslopes absorb a high proportion of event water
(e.g., Dunne & Black, 1970; Hewlett & Hibbert, 1967). It has also long been recognized that storage within and on flood
plains can be an important control on hydrograph shape (e.g., see Beven, 2004b). Less widely considered is the effective-
ness of the exchanges between floodplains and rivers. It is known that the patterns of subsurface inputs to streams can
be highly variable, particularly where a hyporheic zone is present (Alley et al., 2002).

PM7: Catchment systems are not always underlain by impermeable bedrock (and even “impermeable” bedrocks might
allow a degree of deeper seepage in secondary porosity and fracture systems). Deep flows in the system might also have
an effect on water balance where the catchment is very small or where the groundwater divide is different from the sur-
face divide. This was demonstrated at one of the early very detailed studies of soil moisture profiles and groundwater
levels at the Whitehall catchment in Georgia by Tischendorf (1969, see Figure 1.6 in Chorley, 1978). It can also lead to
gauge underflows in valley bottom deposits and bedrock. This was perceived as affecting discharges at one of the Panola
gauging stations, for example. Simulations suggest that even small amounts of deeper seepage might constrain the
build-up of a saturated zone in the soil profile and limit downslope flow connectivity (e.g., Ahuja & Ross, 1983).
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PM8: In the channel network, flow processes will be affected by pool, fall, riffle and dead zone sequences; downstream
variability in channel and floodplain geometry; local modifications in channel geometry during and between events;
seasonal variations in head loss due to macrophyte growth; and sediment concentrations. Ephemeral and discontinuous
stream channels will reflect the local balance of inputs and outputs in reaches of the channel network.

PM9: Increases in scale introduce different types of behavior and range of processes. We expect that there will be a
wider range of geology, soil and land cover types, with channel routing and floodplain storage becoming more impor-
tant relative to hillslope hydrographs as we increase catchment scale.

Each of these brief descriptions could, of course, be expanded with more examples from specific catchments in North
West England or elsewhere. We could, indeed, build up an evidence base for the type of perceptual model we would
expect in different catchment settings within a study network. We could also clearly add to the list if we were also inter-
ested in other hydrologically driven features of the catchment system related to aquatic ecology, carbon cycling, or
nutrient and sediment transport. The model outlined above is perhaps rather general in that it might apply to water
fluxes in a rather wide range of sloping, humid temperate experimental catchments around the globe (e.g., Maimai,
Panola, Andrews Forest, Plynlimon, etc.) but that is partly because of our joint experience in visiting and working in
some of those catchments and reading what others have had to say about them. What has not generally been evident is
how such a perceptual model can be linked to a mathematical description of the processes and then how that descrip-
tion might be tested as a series of research hypotheses.

A schematic outline of such a perceptual model is represented in Figure 1 with components labeled as in the text
above. An interpretation of that schematic model in the form of a cascade of multiple distribution functions in shown
in Figure 2 (as modified from that in Beven, 1989a). Note that the figure does not reflect the dependencies between dis-
tributions (e.g., between celerity and distance from the stream) or the way that they may be non-stationary in time.
This, already simpler schematic model, immediately illustrates the problem of increasing numbers of parameters as
more complexity is introduced, even if at least some of those distributions could be considered stationary. Moving from
perceptual models to even simpler conceptual storage models is also illustrated in Wrede et al. (2015). These models
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FIGURE 1 A schematic representation of the perceptual model with components as outlined in the text
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FIGURE 2 A representation of a perceptual model in the form of a cascade of distribution functions (modified from Beven, 1989a)

however, are tested only in the sense that the calibrated model structures are generally shown to perform better on the
catchment with a corresponding perceptual model than for catchments with different perceptual models (particularly
in the need for a deeper subsurface storage). This is not really the type of consistency with observable behaviors we are
proposing here since the behavior is in essence being derived from the hydrographs that the model is being calibrated
to. It would be good to have additional independent observations for model evaluation and hypothesis testing, even if
that evidence might be necessarily uncertain (Beven, 2015, 2019).

Describing a perceptual model is not so difficult, but we would suggest that many hydrological modelers have
become too remote from field experience to have credible local examples of processes operating at a particular site if
only because of the limited resources often available to practical modeling applications. Certainly, it seems that few
actually think very hard about this perplexing problem of representing the essential elements of that perceptual model
in a working procedural model. This is surely partly because there have been only few exhortations to do so, and also
because a general framework for thinking about perceptual models has been somewhat lacking (see below). We have
done so to a limited extent. It is what led KB to abandon Darcy-Richards equation based models at an early age (see
Beven, 1989b, 2001c), and to continue to work with Topmodel and Dynamic Topmodel, which can reflect some ele-
ments of the perceptual model described above in an integrated way. It is also why he has tried to convey the idea that
those models are not applicable everywhere, despite attempts to incorporate them into global land surface parameteri-
zations. NC by contrast has largely taken a more top-down approach of seeing what hydrological processes might be
inferred from data-based mechanistic (DBM) models of dominant modes of observed response at the hillslope to catch-
ment scales (e.g., Chappell et al., 2006, 2017; Ockenden & Chappell, 2011).

5 | CRITICAL QUESTIONS

It is clear that any definition of a perceptual model for a particular hydrological system at a certain scale will be com-
plex, will include the recognition of nonlinear hydrological functioning, and will recognize the potential importance of
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processes that are very difficult to observe and fluxes that are difficult to quantify accurately. Figure 2 essentially repre-
sents that complexity in a schematic way (with the additional element that the distributions and their linkages will
change over time). On the other hand, we do have observations at certain scales (let us refer to these as a particular
scales of “control volume”) that can be analyzed, using either conceptual models or data-based methods, that aim to
maximize the information extracted. But there is a missing link here. While these data-based methods (or other proce-
dural models) capture some dominant modes of response of the catchments where applied, they do not necessarily tell
us what are the essential processes of the bottom-up perceptual model. This is fundamentally linked to the question
raised earlier of “getting the right results for the right reasons” in addition to any calibration/validation exercise
(Beven, 1987; Kirchner, 2019; Klemes, 1986, 1997; Oreskes et al., 1994), We would suggest that this perplexity then
poses two critical questions that require addressing in future':

1. How can perceptual model hypotheses be tested at scales of interest, or what constitutes consistency between hydro-
logical observations and perceptual understanding of how the hydrological system functions?

2. How can constraints then be imposed on the basis of qualitative perceptual knowledge in conditioning predictive
models?

We will consider these questions in turn.

6 | TESTING PERCEPTUAL MODEL HYPOTHESES

Consider the first question. There is an immediate problem. The perceptual model recognizes complexities at the small
scale (which may still control the distribution of responses at larger scales, for example, Wood et al., 1988); the data analysis
necessarily takes place at the scale of some larger control volume, commonly a catchment where there is a discharge gaug-
ing station (and sometimes a plot, or hillslope, or other experimental facility). Some of that complexity will be lost in the
integration to the control volume scale but not necessarily in the sense of simple averaging. As in the concept of the Repre-
sentative Elementary Area of Wood et al. (1988) the extremes of the small-scale variability might be important in control-
ling the overall response (as might be the case when preferential flows are important). This makes it difficult to use a
perceptual model in a forward sense, that is, to incorporate the understanding of complexity into a quantitative model at
the catchment scales. This is what has made it so difficult to demonstrate that distributed models based on “physical princi-
ples” can provide adequate predictions at the catchment scale (albeit that such models are often deficient in fully building
in all the processes of the perceptual model, see for example, Beven, 2001a, 2001b, 2001c, 2006a, 2006b, 2018).

So, how to test if any element of a perceptual model is wrong? This should in fact be relatively simple in that any con-
flict between observed states or dynamics in a catchment and the perceptual model should result in an immediate
(Popperian) falsification of that aspect of the perceptual model leading to its modification or removal. It is only our per-
ception of how the catchment functions hydrologically that needs to change, accepting there is often considerable hydro-
logical inertia in changing thought processes (Beven, 2018, 2020b, 2021). Of course, as with the example of the Horton
infiltration theory above, this may not be apparent in the analysis or modeling of a discharge hydrograph. It will depend
more on what is actually observable and whether we have the time and resources (or even inclination when there is a
“pet model” to be calibrated) to make such observations. The occurrence of surface saturation or overland flow, for exam-
ple, is in principle directly observable; much of what takes place in the subsurface is not and in both cases a few point
observations might be quite misleading since they might not be in the right places or taken at the right times to properly
capture the nature of the response. Further, we are often dependent on the more detailed observations of others in a
catchment of interest (especially those who have actually been out in storms as they happen), or in catchments distant
from the study area but with (ideally) climatologically, topographically or geologically “similar” characteristics.

What is much more difficult is to demonstrate what is essential in the perceptual model when we are interested in
the responses dominating at the catchment scale. We are more often in the situation of making inferences about the
perceptual model from the analysis of hydrological observations and modeling results, at the control volume scale of
the whole catchment. That is not to say that we cannot evaluate consistency between our perceptions of hydrological
functions and observations at that scale. Classical examples are recession curve analysis and flow duration curves or
other hydrological signatures from observed discharges as indicators of storage change or effective volume in headwater
catchments. This will, of course, be more informative where those signatures can be most easily be related to particular
processes (via recession coefficients or time constants) and can be robust to uncertainties in the observations (Gupta
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et al., 2008; Di Baldassarre & Montanari, 2009; Wagener et al., 2007, Westerberg & McMillan, 2015; Westerberg
et al., 2016; McMillan, 2021).

We can also use the strategy of inference based on dynamic modeling. Approaches such as the data-based mechanis-
tic (DBM) modeling of Young (2003), Young, 2013) can be used to determine appropriate model structures and associ-
ated parameter values for individual catchments. The recursive estimation techniques used are designed to be robust to
uncertainties, and when used with time variable parameter identification can be used to explore the nonlinear gains in
the system (e.g., Young & Beven, 1994, Chappell & Tych, 2012, and Mindham et al., 2018, for hydrological examples),
while the time distribution is represented using linear transfer functions. Young (2011) has developed continuous time
model identification algorithms for which the parameters are consistent across time steps. Model structures are evalu-
ated in terms of both goodness-of-fit and uncertainty in the parameter estimates. Systems analysis of rainfall-runoff
dynamics of catchment systems often result in a parallel pathways model structure with fast and slow time constants
representing two different dominant modes of response, preceded by a nonlinear gain function. Such a structure
requires only a small number of gain and time constant parameters that can inform a local perceptual model, or be used
to classify catchments in terms of their modes of response. Such information is one top-down way of building up hydro-
logical knowledge at integrated control volume scales in that it captures the dominant modes of response at that scale.
It does not in itself, however, provide any inference about consistency with the detailed perceptual model of smaller
scale processes. This would require more specific experimentation on those processes which could be used to feed infor-
mation into the data-based modeling in a way that goes beyond the catchment characteristic indices (such as those used
in the deep learning data-based model of Kratzert et al., 2019). We will consider this further in the next section.

By using recursive estimation as a way of studying an appropriate nonlinearity, and by allowing for parameter uncer-
tainties, the DBM approach provides a neat way of identifying appropriate model structures for a particular system. In that
the approach depends on time-series observations, it would be more difficult to apply to the relevant fluxes of energy and
momentum, or to biogeochemical variables, since input and output sequences for hillslope and catchment scales are less
readily available, and local observations (e.g., Fluxnet sites) may not be representative of larger areas. Other studies have
used more traditional modeling toolkits. The study of Wrede et al. (2015), noted earlier, used the SuperFLEX modeling
approach to identify model structures for three catchments in Luxembourg. This revealed a perceptual expectation that these
catchments would require different model structures, primarily as a result of differences in their hydrogeology. This was
borne out by the identified model structures. This study did, however, rely on the optimization of a goodness of fit index to
identify appropriate model structures and associated parameter values, without any consideration of uncertainty in the cali-
bration data used. This type of approach has been extended to automatic model structure identifications as well as parameter
value optimization by Spieler et al. (2020). Knoben et al. (2020) used the MARRMOoT ensemble of rainfall-runoff models in a
study of 559 catchments selected from the US CAMELS database in this way, though they did compare the model results
with a benchmark model of mean or modal daily values of the calibration data. In their case, model choice appeared to
depend more on the choice of objective function than catchment characteristics. Lane et al. (2019) came to similar
conclusions in applications of FUSE model structures to 1,000 UK catchments, also demonstrating that models might fail
for catchments where there was poor water balance closure. Kratzert et al. (2019) suggest that a Deep Learning Model will
out-perform any conceptual hydrological model across such an ensemble of catchment datasets. This might be, in part,
because of the potential of data-based methods to compensate for consistent data errors (Beven, 2020a, 2020b, 2021).

These types of meta-analyses would be required to underpin the type of global perceptual model of expectations of
dominant modes of response discussed in Wagener et al. (2021) who argue that model applications should explicitly
state the type of perceptual understanding that underlies the choice of a model structure. In that way, the choice of a
particular model structure should more properly reflect the perceptual model for a catchment. Fowler et al. (2020) point
out that this may not always be the case, particularly in the case of representing the storages associated with long reces-
sion periods. This was also a result of applying a single semi-distributed model structure (DECIPHeR) to the CAMELS-
GB 1000 catchment database in Coxon et al. (2019). Their study demonstrated the need to modify the model structure
for catchments with large baseflow components.

7 | USING PERCEPTUAL UNDERSTANDING TO CONSTRAIN
HYDROLOGICAL MODELS

The second critical question is how to use perceptual understanding to constrain the predictions and prediction uncer-
tainties of hydrological models. In some circumstances, we are not only interested in the dominant modes of response
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that can be determined from hydrological signatures or data-based models, but rather in predicting future behaviors as
a result of management changes. That implies that there will be changes to processes at scales within the control vol-
ume that will then impact on the response. How the gains and time constants might change into the future is also an
interesting question, though if we really thought about it, speculating about changes in such dominant mode parame-
ters (Chappell et al., 2006; Jones et al., 2014; Walsh et al., 2011) might not be more difficult than speculating about
changes in the many more interacting process parameters in a more reductionist approach (an argument made long
ago by Beven, 1989b). We are just less used to thinking in a less reductionist way (see also the discussion in Wagener
et al., 2021). Where process parameters in a model have been estimated by calibration, there might be complex interac-
tions with the parameters of other process representations. It does remain a scientific challenge in hydrology, however,
to show that we can model the processes of complex catchment systems (and potential future changes) successfully.

Additional observations more directly related to the perceptual model might then prove valuable in constraining
hydrological model predictions in ways that “show that we do, after all, understand our science and its complex interre-
lated phenomena” (going back to Kohler, 1969). As Beven (1989b) suggested: “I believe that any application in which
physically correct predictions are considered important must involve a close cooperation between field observation and
modeling. The nature of this cooperation, and in particular the nature of appropriate field observation and parameter mea-
surement techniques, requires considerable further research if physically-based models are to realize the advantages that
are currently being claimed for them.” (p. 168). This implies using observations that go beyond input—output time series
and static catchment indices and signatures (see, for example, Hingray et al., 2010; Euser et al., 2013; Shafii &
Tolson, 2015) which can be problematic to relate to specific processes. This is related to suggestions of using “soft” data
or “auxiliary” data in model calibrations and evaluations in the past (e.g., Mroczkowski et al., 1997; Seibert &
McDonnell, 2002; Winsemius et al., 2009; Son & Sivapalan, 2007). Time series of internal state, flux or tracer measure-
ments can then be related more directly to perceptual process understanding, even if the observations might be sparse.

This might be, for example, patterns of saturation and estimates of saturated areas (Ambroise et al., 1996; Beven &
Kirkby, 1979; Blazkova et al., 2002; Lamb et al., 1998), the dynamics of discontinuous streams (Botter &
Durighetto, 2020; Godsey & Kirchner, 2014; Van Meerveld et al., 2019); or the fraction of young water in the hydro-
graph for information about velocities as well as celerities (Von Freyberg et al., 2018). Techniques such as the ensemble
hydrograph separation approach to tracer analysis of Kirchner (2019) can reveal something about time variability in
responses that might provide new insights into perceptual models of transport. Knapp et al. (2019) used this approach
with high frequency isotope data at Plynlimon and showed that only relatively small percentages of rainfalls over the
previous 24 hr and week were contributing to streamflow in this wet, highly responsive catchment. Earlier isotope stud-
ies at Plynlimon on storm discharges in ephemeral natural peat pipes at Plynlimom had also shown a response domi-
nated by displaced water (Sklash et al., 1986).

To use such information to constrain hydrological model predictions requires, however, that the model structures
used can provide predictions of the required variables. In some cases this reflects the perceptual model used in defining
a model, such as the saturated area predictions of Topmodel and Dynamic Topmodel, but those models that are based
on collections of conceptual storages might not easily make such a link, that is, observed and modeled storage variables
might not be directly commensurable.

So looking to the future, what types of information might be valuable in constraining hydrological models in ways
consistent with perceptual understanding. The value of information in this way could be examined by a form of
pre-posterior prior sensitivity analysis using a model structure set up to predict different types of variable that could
potentially be observed in the future (see, e.g., Beven et al., 2020). This is somewhat different from more traditional ana-
lyses of sensitivity of modeled variables or objective functions to parameter variations (e.g., Kelleher et al., 2015; Maples
et al., 2020; Pappenberger et al., 2006; Pianosi et al., 2015) and more like the assessment of where to drill a new well in
aquifer modeling (Freeze et al., 1992; Rajabi et al., 2018). Such an analysis allows us to speculate, based on our percep-
tual understanding, about observations that could be worth testing in such a way. Such speculation suggests that local
point measurements might be less valuable, unless they reflect the integration of processes around that point. Fluxnet
or groundwater level observations do so to an extent but might not necessarily be representative in the cases of hetero-
geneous vegetation covers or shallow saturated systems. Very many point measurements might perhaps be valuable if
they reveal some spatial coherence of responses, but this is not always the case even in a single catchment (e.g., the soil
moisture profile sampling system of Western et al., 1999).

More integrative measures, such as mapped saturated areas and lengths of flowing streams, have been used in the
past in model evaluations, but have generally relied on occasional ground-based surveys. It would be particularly valu-
able to have techniques for more continuous observations over larger spatial scales, such as using remote sensing to
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detect surface water in some way. Both microwave sensing and infrared temperature sensing have been used in
detecting surface soil moisture and groundwater return flows (e.g., Deng et al., 2020; Glaser et al., 2016) but the former
is dependent on the apparent dielectric constant of the soil surface which shows a lack of sensitivity near saturation at
MHz frequencies, and the latter is dependent on a consistent difference in temperature for water sources.

Another measure that could be valuable, not only in constraining models but also in closing the water balance,
would be a direct measure of storage changes in a catchment. Gravity anomaly techniques have been used both on the
ground (Glintner et al., 2017) and on the GRACE satellite. The latter has such a coarse resolution, however, that it has
little value at small catchment scales. Ground-based methods have not been used widely, in part because it is a very
expensive technique but also, perhaps, because there are more issues in getting time series of storage values. Testing
the potential for this method in practice could be evaluated by a pre-posterior prior analysis but more widespread
implementation would require much cheaper installation costs. There is now an increasing network of COSMOS soil
moisture sensors that do give time series, but only for very near surface storage within a volume that changes with
moisture status, COSMOS data have been used for model calibration (e.g., see the discussion of Dimitrova-Petrova
et al., 2020) but there is a real issue of commensurability with predicted variables in this case. Microwave remote sens-
ing of surface soil moisture suffers from similar issues of sensitivity and commensurability.

One technique that might prove cost effective could be the observation of incremental discharges in river networks.
Even at small scales incremental discharges can show considerable variability, primarily as a result of hydrogeological
variations along channels (e.g., Genereux et al., 1993). It therefore has the potential to both inform the perceptual
model (do we really understand the differences that are observed?) and to provide constraints on predictive models. To
take full advantage of the information, of course, the model would have to be set up in at least a semi-distributed way
to make the observed and predicted reach discharges commensurable, and the discharges would have to be estimated
with high accuracy (since incremental discharge requires taking differences, thereby increasing the uncertainty associ-
ated with the estimates).

The possibility of distributed predictions also brings in another possible source of perceptual information - knowl-
edge from local stakeholders. The possibility of detailed visualizations of model outcomes gives rise to the possibility of
those predictions being evaluated for consistency with local knowledge. In particular, conflicts between model predic-
tions and local perceptual knowledge can lead to modifications to model processes, parameters, or boundary conditions
(e.g., Lane et al., 2011). This type of falsification underlies the “models of everywhere” predictive modeling strategy
advocated, for example, by Beven (2007), Beven and Alcock (2012) and Blair et al. (2019). It is worth making the point
that even such simple evaluations might have avoided some perceptual errors of the past such as in the continuing
application of infiltration excess models of streamflow generation in areas where widespread overland flow was simply
not observed (e.g., discussion of Beven, 2021). The important factor in such a test, of course, is to actually observe what
is going on during hydrologically active periods as a way of constraining model predictions and, in future, develop more
techniques for making this possible.

8 | CONCLUSIONS

Hydrological models based on process representations currently face a challenge from data-based and machine learning
modeling methodologies that will often provide a better fit to the available calibration and test data. There may be some
good reasons for this, including the effects of noise and errors in observed hydrological data sets (see Beven, 2019,
2020a) but this challenge is compounded by the difficulties of subsuming the essential elements of highly complex per-
ceptual models of the processes into a parsimonious predictive model. While we can easily modify the qualitative
perceptual model of a catchment following direct observations, we do not have good ways of deciding what is essential
to include in a predictive model; we do not have good ways of learning from data-based analyses of dominant modes of
response to improve process-based models; and we do not have good ways of “learning from the physics” where that
physics is small scale and dominated by unknowable local boundary conditions in heterogeneous subsurface and com-
plex vegetated surfaces. We can however, use local conflicts between model simulations and perceptions of how a
catchment works as a way of learning how to improve models of everywhere.

This is important in the context of predicting future change. So far, we have primarily considered perceptual models
in the context of the physical processes of catchment response. Future change as a result of human activities whether
directly or indirectly through climate shifts, requires additional components of a perceptual model of what the impact
of such changes might be. This is the focus of the Panta Rhei initiative of IAHS (see, for example, Kreibich et al., 2017)
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and part of the perceptual model uncertainty of Westerberg et al. (2017). While data-based and machine learning
methods might well be able to demonstrate better performance in reproducing past hydrological observations, predic-
tion of future change would require that enough information about the effects of such change is available in the train-
ing data set of past observations (see the discussion of Mount et al., 2016, in the context of Panta Rhei). Some such
information may be available in a generalized way (proportions of urban or forested areas for example), but more spe-
cific spatially localized changes would not be (such as assessing different spatial strategies in natural flood management
interventions). There is still a need therefore for process-based models that can reflect these localized forms of change
more explicitly. The question is how to implement a learning process in moving from perceptual complexity to parsimoni-
ous predictability?
What can we say about that question now?

« We need better ways of observing spatial patterns of hydrological responses so as to refine our perceptual models and
understanding of the dominant controls on those responses. Remote sensing might help here (e.g., Antonelli
et al., 2020), but is often limited to only near-surface signals and subject to significant uncertainties (e.g., estimates of
evapotranspiration) and limitations of the calibrations (e.g., sensitivity of the apparent dielectric constant to
unknown variations in organic matter content). Other possibilities need to be considered, including low cost distrib-
uted sensors and more integrative measurements such as incremental stream discharges (e.g., Beven et al., 2020;
Mao et al., 2019).

« There will be some processes, for example preferential flows in the subsurface, that will be particularly difficult to
study and parameterize. Evidence for their importance is ubiquitous and they will feature in many hydrologists’ per-
ceptual models, not only in terms of water flows but also in the transport of nutrients and pollutants. Preferential
flows can be generated by a variety of different mechanisms depending on soil structures and patterns of inputs, and
their functioning is not readily quantified without disturbing the soil profile. It might therefore be necessary to sub-
sume the detail of such processes as a parameterization at a larger “representative” scale (see, for example, Chappell
et al., 1998; Beven, 2006b). It might be possible to infer the nature of that parameterization using data-based or
machine learning methods at that scale (e.g., Beven, 2020a). Ways are needed to make novel types of observations
and sufficient data available to allow such inference.

« We might be guided in what is essential, and in what type of novel observations might be useful, by the type of model
sensitivity analysis discussed earlier. This, of course, comes with the important caveat that any such analysis is
dependent on the model used and the assumptions that are necessarily incorporated when simplifying any underly-
ing perceptual model.

« We should be prepared to accept that models, or particular parameter sets within a model, might be invalidated by
being inconsistent with a perceptual model of how a catchment responds, even if they can be calibrated to give good
fits to the streamflow data (there is actually an example of this back in Beven & Kirkby, 1979). As detailed distributed
predictions become more common (the models of everywhere concept), invalidation will increasingly occur at a local
level invoking changes to the model (or perhaps a closer look at the underlying perceptual model)

We can conclude that there remains much to be done in moving beyond traditional calibration of readily available
model structures and testing only goodness of fit indices. We require new ways of incorporating perceptual understand-
ing into parsimonious model structures as a way of moving closer to getting the right results for the right reasons.
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ENDNOTE

! Note that the term perceptual model does not appear anywhere in the Bléschl and Merz (2009) paper on 23 Unsolved
Problems in Hydrology. A lack of perceptual understanding does appear to underlie a number of the problems listed,
however, and the questions posed here are relevant particularly to Unsolved Problems Nos. 4, 5, 7, 8, 12, 13, 14, 15,
18, and 19.

[Correction added on 24 May 2021, after first online publication: Further Reading section has been removed.]
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