
SENRA Academic Publishers, British Columbia  
Vol. 7, No. 2, pp. 2405-2424, June 2013 
Online ISSN: 1920-3853; Print ISSN: 1715-9997 
 

DATA-BASED MECHANISTIC MODELLING OF RAINFALL TO RIV ERFLOW 
OF LARGE NESTED TROPICAL RAINFOREST CATCHMENTS IN G HANA 

 
*Boateng Ampadu1, Nick A Chappell2 andWlodek Tych2 

1Department of Earth and Environmental Science, Faculty of Applied Sciences 
University for Development Studies, PO. Box 24, Navrongo-Ghana 

2Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 
 

ABSTRACT 
 
Within the Data Based Mechanistic (DBM) Transfer Function rainfall to riverflow modelling approach a mathematical 
model in the form of a transfer function rainfall to riverflow is obtained by extracting information from the available 
time series data. The DBM methodology is able to use the data to identify the model structure in an objective statistical 
manner using the simplified recursive instrumental variable algorithm (SRIV). The approach requires few spatially-
distributed data for the estimation of the models and is, therefore, suitable for data limited regions like West Africa. 
Within this paper we present a review of the application of the model in hydrological studies in different climatic 
conditions. The application of the approach to large nested catchments in the humid rainforest zone in Ghana have also 
been presented. The approach revealed an exponential form of non-linear behaviour for the catchments. The estimated 
model parameters and the associated dynamic response characteristics (DRCs) of time constant (TC) and steady state 
gain (SSG) indicates that riverflow generation within the catchments are not flashy. The model identified mathematical 
relationships which could be used to simulate flows in the catchments. 
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INTRODUCTION  
 
Rainfall-riverflow modelling provides the means, for the 
investigation of the interaction between climate and 
riverflow. Understanding the dynamic link between 
rainfall and riverflow response can also give greater 
understanding of rainfall-riverflow processes through 
hydrologic interpretation of the Dynamic Response 
Characteristics (DRCs) of a catchment. This requires the 
use of extensive historical records which are generally 
lacking in Africa, as highlighted by Giles (2005) and 
Weston and Steven (2005).  
 
In West Africa, the dearth of meteorological data is very 
common, as pointed out by van de Giessen et al. (2002). 
In Ghana, the situation is not far different from other 
African countries; hydrological and meteorological data 
of the country are inadequate and of poor quality, with the 
exception of a few stations (Adiku et al., 1997). 
Generally, rainfall and riverflow stations in the tropics are 
of low density and in some areas of interest; the requisite 
data is simply not available (Douglas, 1999). Some of the 
recording instruments are no more in existence, while the 
existing ones are deteriorating. This calls for the use of 
models that can handle few data inputs, and quantify the 
effects of sometimes poor data quality on model 
structures and parameters to be interpreted (Young et al., 

1999; Young, 2001; Chappell et al., 2006). One of such 
approaches is the relatively new Data-Based Mechanistic 
(DBM) modelling routines (Young and Minchin, 1991; 
Young and Lees, 1993; Young and Beven, 1994; 
Chappell et al., 1999; Lees, 2000).  
 
The Data-Based Mechanistic (DBM) modelling approach 
(Young and Lees, 1993; Young and Beven, 1994; Young, 
2001; Chappell et al., 1999) involves three steps, which 
are a) extraction of information from the rainfall and 
riverflow records by fitting models to the data, b) 
identification of a range of transfer function models and 
their associated hydrological system parameters using 
objective statistical tests and c) selection of the model 
with the most plausible physical/hydrological explanation 
of the data. Unlike physics-based and conceptual 
modelling approaches, it is based on the concept whereby 
the data is allowed to suggest the type of model which is 
compatible with the input and output data in a stochastic 
manner. The mechanistic nature of the final stage of the 
approach allows the physical interpretation of the 
resulting model.  
 
The DBM Transfer Function (TF) modelling approach is 
one of the routines within the DBM-CAPTAIN package 
(Taylor et al., 2007) used in hydrological modelling (e.g. 
see: Young and Beven, 1994; Young et al., 1997; Lees, 
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2000; Mwakalila et al., 2001). The modelling routine is 
capable of revealing possible hydrological pathways 
within a catchment (Chappell et al., 1999; Young, 2001; 
Vongtanaboon and Chappell, 2004) and estimates the 
parameters or DRCs associated with the different flow 
pathways (Young et al., 1997; Chappell et al., 1999).   
 
Within the DBM transfer function rainfall to riverflow 
modelling approach, an optimal mathematical relationship 
relating rainfall (input) to riverflow (output) in the form 
of transfer functions with its associated parameters is 
obtained. Generally, the identified model structure 
includes nonlinear components due to the effects of 
nonlinearity as a result of antecedent moisture in the sub-
surface. The optimal model is selected from a range of 
model structures using objective statistical tests and the 
model structure’s consistency with physical/hydrological 
theory. One of the major advantages of this modelling 
procedure over conceptual hydrological models is that the 
structure is objectively identified as part of the modelling 
procedure. The DBM model is robust and parsimonious 
as compared to the traditional modelling approaches (e.g. 
physics-based models), as it minimises the number of 
parameters while producing models with a high 
simulation efficiency (Chappell et al., 2006). It is, 
therefore, suitable for data limited region such as Africa 
in general and Ghana in particular.  
 
The DBM concept has been applied successfully in 
rainfall-riverflow modelling (e.g. see: Young, 1993, 2001; 
Young and Beven, 1994; Young et al., 1997; Young, 
1998; Beven, 2001; Lees, 2000) and flood forecasting 
(Lees et al., 1994; Lees, 2000; Young, 2002, 2006) in 
humid temperate conditions. In the tropics, Chappell et al. 
(1999, 2004a, 2004b, 2006) report of the application of 
the approach to the short-term behaviour of the rainfall-
riverflow system and rainfall-suspended sediment system 
of the 0.44 km2 Baru catchment in Borneo, Malaysia. The 
model has a 5 minutes resolution and explained 80% and 
90% of the variance, respectively. In Thailand, the 
approach has been applied successfully to model rainfall 
and riverflow behaviour in large rainforest catchments 
(Vongtanaboon, 2004; Vongtanaboon and Chappell, 
2004). Vongtanaboon and Chappell (2004) report that in 
the North Western Thailand, within the Mae Chaem 
catchment (3853 km2), the output of the DBM model 
suggests that 97% of water flow to the river travels along 
with relatively little storage (time constant of 1.2 days). 
Again within Thailand, recently Vongtanaboon et al. 
(2008) have utilised the technique to model a large 
monsoon dominated catchment. Chappell et al. (2006) 
have applied the model to simulate the sensitivity of 
streamflow behaviour to different densities of skidder 
vehicle trails within a managed rainforest in Borneo, 
Malaysia.  
 

In reservoir sedimentation analysis, the methodology has 
been applied successfully by Price et al. (2000) and 
Rowan et al. (2001). The maiden application of the model 
in Africa has been reported by Mwakalila et al. (2001). 
The model was used successfully to predict riverflow 
generation in a semi-arid environment in Tanzania, East 
Africa. Recently, in the same country, Vigiak et al. (2006) 
have reported of the successful application of the 
approach in a humid tropical rainforest catchment to 
simulate overland flow. The application of the approach 
in the Volta basin in West Africa has also been reported 
by Amisigo (2005). 
 
The aim of this study is to apply DBM TF rainfall-
riverflow modelling approach to study rainfall to 
riverflow behaviour within large nested forest catchments 
in Ghana. The specific objectives are  a) to investigate the 
applicability of the DBM transfer function rainfall to 
riverflow modelling approach in large nested catchments 
in tropical rainforest within the River Pra basin in Ghana, 
using daily time-series, b) to identify the mathematical 
relationships between the catchment average rainfall and 
riverflow, and estimate their accompanying parameters 
with uncertainty and c) to give physical interpretation of 
the estimated parameters of the identified models in (b) 
and the accompanying Dynamic Response Characteristics 
(DRCs).  
 
The study catchment and data series used in the 
analysis 
The study was conducted using rainfall and riverflow data 
from the River Pra Basin which lies in the forest zone of 
Ghana within latitude 5º and 7º 30' N and longitude 0º and 
2º 30' W, respectively (Fig. 1) with catchment area of 
20778 km2. It is the largest basin in the forest zone of 
Ghana and has enough water which is capable of 
generating hydropower (Dickson and Benneh, 1988). The 
basin lies in the Wet Semi-Equatorial climatic zone with 
climate that is influenced principally by the tropical 
maritime (monsoon) and continental (harmattan) air 
masses. Two distinct seasonal rainfall distributions (i.e. 
the bi-modal distribution) are normally experienced in the 
area which usually commences in March peaking around 
June with dry spell in August, peaking again in September 
and October. The rainfall pattern generally dictates the 
riverflow totals (Fig. 2) where most of the rivers in the 
basin are permanent; flowing throughout the year. The 
underlain geology of the basin is principally Birimian 
rocks with a section in the middle underlain by Tarkwain 
formation with soil cover which is predominantly 
Acrisols (Forest Ochrosols). The Pra basin is of national 
and global importance due to cocoa, timber and oil palm 
production in addition to food crops and mining 
industries.     
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Fig. 1. Map of Ghana showing the location of the selected gauging stations (i.e. small red triangles) in the River Pra 
basin at Kade on River Birim, and Assin Praso and Twifo Praso on River Pra used in the DBM transfer function 
rainfall-riverflow modelling and the drainage basins in Ghana. 

STUDY 
AREA 
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The data series used were daily riverflow (cumecs) and 
daily rainfall (mm) obtained from the Hydrological 
Services Department (HSD) and Meteorological Services 
Department (MSD), respectively in Accra, Ghana. Flows 
from River Birim gauged at Kade and River Pra gauged at 
Assin Praso and Twifo Praso were used (Fig. 1). The 
riverflow data in cumecs were converted to millimetres 
per day using the respective catchment areas of the 
selected gauging stations (Table 1).   
 
Table 1. Catchment sizes for River Birim at Kade and 
River Pra at Assin Praso and Twifo Praso in the River Pra 
basin (see Fig. 1 for the location of the gauging stations)  
 

River 
Gauging 
Station 

Catchment Area 
(km2) 

Birim Kade 2126.67 
Pra Assin Praso 9347.31 
Pra Twifo Praso 20778.00 

 

MATERIALS AND METHODS 
 
Linear transfer function model (LTFM) 
The general form of linear transfer function (single input-
single output) which forms the basis of the transfer 
function model (TFM) package is given by  
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where yt is the observed riverflow, Ut is ‘effective 

rainfall’, z is a backward shift operator (i.e. qtt
q uuz −

− = ) 

and δ  is the pure time delay (i.e. delay between rainfall 
and initial river response). The N and M represent the 
number of a and b parameters, respectively. The 

residual tε  is defined as  
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Fig. 2. Daily rainfall and flows of River Pra at Assin Praso for the 1978 water year (from March 1, 1978 to February 
28, 1979) showing the bimodal regime of rainfall in the Forest zone which is followed by riverflow.    
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where Qt is the model output, ( )1ˆ −zA  and ( )1ˆ −zB  are the 

estimated TF polynomials in 1−z  of Equation 2 and 3, 

respectively and δ̂  is the estimated pure time delay. In a 
first order model the estimates of the TF polynomials are 

( ) 0
1 ˆˆ bzB =−  and ( ) 1

1
1 ˆ1ˆ −− += zazA . Term 0̂b  is the 

system production or gain parameter estimate (or ‘water 
balance’ term) which scales the difference in total 

volumes of input and output and 1̂a  is the recession or lag 
parameter estimate which is linked to the ‘residence time’ 
of the response in the catchment. The derivation of 
Equation 1 can be found in Beven (2001a). According to 

Young (2003) the residual (tε ; noise term) accounts for 

all the riverflow not explained by Qt and includes factors 
such as the modelling error, noise in the data, the effects 
of unobserved inputs and spatial heterogeneity in the 
rainfall data. The order of the transfer function model is 
defined by the triad [N, M,δ ]. Where N and M represent 
the number of a and b parameters in Equations 2 and 3, 

respectively and δ  is the pure time delay. 
 
Depending on the nature of the dominant pathways within 
a catchment, a first-order transfer function model (see: 
Young, 1992, 1993; Young and Beven, 1994; Chappell et 
al., 1999, 2004b) or a higher-order model (see: Young 
and Beven, 1994; Young, 1993; Young et al., 1997; Lees, 
2000; Young, 2001; Vongtanaboon and Chappell, 2004) 
may best describe the rainfall-riverflow response. A 
typical first-order transfer function model is given by 
Young (1992, 2005), Young and Beven (1994) and 
Chappell et al. (1999, 2004b, 2006) as: 
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= tt U

z

P
Q

11
    (6) 

where Qt is the subsurface flow along the dominant flow 

pathway at time step t; P the production parameter; ℜ  

the recession parameter; U effective rainfall;δ  the pure 
time delay between the effective rainfall and the initial 

riverflow response and 1−z  is the backward shift 
operator. The DRCs which describes the rainfall-
riverflow of a catchment are based on the parameters P 

andℜ  of Equation 6 and are given by Chappell et al. 
(1999, 2006) as:  
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where SSG is the steady state gain (water balance term); 

TC is the time constant (residence time) and baset  is the 

sampling interval (in this study a day). The SSG indicates 
the amount of the rainfall which appears as riverflow 
following evapo-transpiration and other losses, while TC 
is a measure of the residence time of the rainfall in the 
catchment.  
 
Modelling non-linearities in hydrological behaviour  
The hydrological process of the translation of rainfall into 
riverflow is inherently nonlinear due to the effects of 
varying subsurface moisture (FAO, 1981; Young and 
Beven, 1994). To model this non-linearity, the effective 
rainfall U in Equation 1 is often related to the actual 
rainfall R and the observed flow y by a nonlinear function 
(e.g. a power law: see: Young and Beven, 1994; Chappell 
et al., 1999; Beven, 2001). 
 
Power law sub-model (SSSM) 
In the power law application, the effective rainfall U in 
(Equation 1) is linked with the actual rainfall R and the 
observed flow y by a power law relationship which is 
referred to as the store–surrogate sub-model (SSSM) and 
is defined by Young and Beven (1994) as:  

α
ttt yRU =      (9) 

where α is the estimate of the power law exponent which 
is a measure of the sensitivity of the catchment to 
antecedent moisture conditions. The term α, usually 
ranges between zero and unity (Beven, 2001a) with the 
value of unity indicating higher sensitivity and zero no 
sensitivity, i.e. the linear model (Equation 1). Young and 
Beven (1994) estimated a value of 0.628 for a catchment 
in Mid-Wales in the U.K. and Young (1998) estimated a 
value of 0.770 for a catchment in the USA. Chappell et al. 
(1999) also estimated a value of 0.420 for equatorial 
catchment in East Malaysia. The catchment in the USA is 
clearly more sensitive to antecedent moisture conditions. 
 
Bedford Ouse sub-model (BOSM) 
Within the DBM methodology the Bedford Ouse Sub-
Model (BOSM) (Young, 2001;  
Chappell et al., 2004b, 2006) is also used to model the 
nonlinear component of the rainfall-riverflow process. 
The general form of the model is given in Chappell et al. 
(2004b, 2006) as: 
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where Ut is the effective rainfall (mm); Rt is the average 

(gross) rainfall (mm); 1−tθ  is the unsaturated zone storage 

variable at the previous time step (mm); uτ  is the 

dimensionless nonlinearity term for the whole catchment 
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response. The nonlinearity term (uτ ) is obtained by an 

iterative process applied to the BOSM and transfer 
function expressions with the objective function set at a 
higher Rt

2 and a minimum YIC with θ  initially set as 
zero. The IHACRES model (Jakeman et al., 1990; 
Jakeman and Hornberger, 1993) has also been used in the 
modelling of nonlinear behaviour in the rainfall-riverflow 
process (e.g. see: Post and Jakeman, 1996; Sefton and 
Howarth, 1998; Young, 2001). This model is an extension 
of the BOSM approach, which includes temperature 
effects. 
 

Exponential function sub-model (EFSM) 
An exponential function sub-model (EFSM) has also been 
used to quantify nonlinear component of the rainfall 
riverflow process (see: Young, 2006). The application of 
the EFSM within the DBM methodology of this study is 
probably, the first of its kind in the tropics. The general 
form of the model is given by  

    ( )ty
tt eRU ⋅−−= β1     (12)        

where Ut is the effective rainfall (mm); Rt is the average 
(gross) rainfall (mm); yt is the observed riverflow (mm); β 
is the exponential parameter (β≠ 0). This approach was 
successfully used by Young (2006) to model the daily 
rainfall-flow data from the Leaf River catchment, with an 
estimated β parameter of 0.0124 and efficiency of 86.0%. 
This 1944 km2 catchment is a humid watershed, located in 
Mississippi, USA.  
 
Normalisation of ‘effective rainfall’ produced by 
nonlinear sub-model  
In order to maintain mass balance, the effective rainfall 
from the EFSM and BOSM nonlinear rainfall filters are 
normalised in relation to the catchment average rainfall. 
The normalised effective rainfall Uet is given in Chappell 
et al. (1999) as:  
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The nonlinearity term with these models can be 

incorporated into the triad to give [N, M, δ ]P where P is 
the nonlinear term (i.e. BOSM or EFSM filter), N and M 
represent the number of a and b parameters in Equations 2 
and 3, respectively and δ is the pure time delay.  
 

The EFSM model utilises past riverflows to derive the 
form of the nonlinearity while the BOSM filter requires 
only rainfall. In this study, the EFSM together with the 
BOSM are applied.  
 

Model order (complexity) identification 
The model identification may result in a range of models 

[N, M,δ ]  P giving a good fit to the data. A first-order 
model has one dominant mode water pathway describing 
the rainfall-riverflow response. A second-order model is 

normally explained by having two parallel water 
pathways, a fast pathway and a slow pathway (Young and 
Beven, 1994; Young, 1993, 2002). Example of fast 
pathways includes infiltration-excess overland flow (van 
Loon and Keesman, 2000) or shallow sub-surface flow 
(Chappell et al., 1998). Slow pathway includes flow deep 
within rock aquifers (e.g. Sefton and Howarth, 1998). The 
more pathways the model identifies as plausible, the 
higher the model order. The best of them is considered 
based around the coefficient of determination (Rt

2) (or 
Simplified Nash and Sutcliffe efficiency (1970) criteria in 
hydrological literature) and the heuristic Young 
Information Criterion (YIC) (Young and Beven, 1994; 
Lees, 2000; Young, 2001; Beven, 2001a) which are 
defined as follows: 
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where 2
0σ  is the variance in the observed data; 2σ is 

variance of the model residuals; NEVN is the Normalised 
Error Variance Norm which is a measure of the model’s 
parsimony (i.e. the degree of over-parameterisation in the 
model); 1++= mnnp  is the number of estimated 

parameters in the θ  vector; iiP2σ  is an estimate of the 

variance of the estimated uncertainty on the i th 

parameter estimate; and 2
iθ
)

is the square of the i th 

parameter in the θ  vector. 
 
The Rt

2 is a statistical measure of how well the model 
explains the variance of the data, if it is between zero and 
unity it is the proportion of output variance explained by 
the model: as the model fit improves its value approaches 
unity, thus when the variance of the residuals is low as 

compared to the variance of the data. If 2σ and 2
0σ  are 

of similar magnitude then it tends towards zero and the 
model fits no better than the mean of the observed data. 
With particularly bad models (e.g. unstable), residual 
variance can be larger than that of the output data, which 
explains negative values of Rt

2.    
 
The YIC is a more complex criterion that provides a 
measure of the balance between model fit and over-
parameterisation (Lees, 2000). The first term of YIC is 
simply a relative measure of how well the model explains 
the data. Thus, when the model residuals get smaller and 
closer to zero the term becomes more negative. The 
second term quantifies the degree of over-
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parameterisation in the model, and tends to become larger 
when the model is over-parameterised and the parameter 
estimates are poorly defined. Based on the above criteria 
the approach helps to identify a model which explains the 
data well with a minimum number of parameters which 
are statistically well defined. 
 
DBM rainfall to riverflow modelling steps  
The procedure for the building of DBM transfer function 
rainfall to riverflow model (see: Young and Beven, 1994; 
Lees, 2000; Young, 2001) is as follows:   
1) Identify linear transfer function model for the time 

series data [yt, Ut] using the Simplified Refined 
Instrumental Variable (SRIV) algorithm (Young, 
1985, 1991). The SRIV method uses a recursive least 
square algorithm (Young, 1984) followed by the 
application of the instrumental variable (IV) method 
(Young, 1985) which removes the bias of the 
estimates. 

2) Examine the model fit by visualisation and 
investigation of goodness of fit using Rt

2. If the 
model fit is satisfactory the analysis is complete, 
proceed to step 8. Otherwise, proceed to step 3.     

3) Based on the analysis in steps 1 and 2 plus 
knowledge of the physical/hydrological system select 
the simplest transfer function model which appears 
capable of characterising the behaviour of the output 
variable (riverflow) in relation to the observed input 
(rainfall).  

4) Obtain initial estimate of time variable parameters 
(TVPs) in a transfer function model by    using fixed 
interval smoothing estimation (FIS) (Young, 1984; 
Young 1986; Young, 1998). 

5) Investigate state dependent parameter (SDP) relations 
(e.g. gain versus riverflow) using scatter plots 
(Young and Beven, 1994; Young, 2001; 2003; 2006). 

6) If a single relationship emerges, repeat the TVP 
estimation with the data processed in order of the 
ranked dependent state to improve the SDP relation. 

7) In case of the presence of gain nonlinearities, 
reformulate the model as an input nonlinearity 
combined with a linear transfer function model and 
estimate the parameters using the SRIV method of 
system identification. 

8) Investigate the physical interpretation of the different 
resultant models and select the one that explained the 
data well and has a sensible mechanistic 
(hydrological) interpretation of the data. This aspect 

of the approach is the ‘heart and soul’ of the DBM 
approach.       

 
Application of the DBM TF model to the data 
Initial visual analysis of the rainfall and riverflow data in 
the catchments revealed that the 1978 water year (i.e. 
from March 1, 1978 to February 28, 1979) was the only 
period where data was available at riverflow stations used 
in the study. The 1978 water year was, therefore, used as 
the period of analysis for the application of the DBM TF 
model.  
 
The DBM TF model as outlined in above was applied to 
riverflows of River Birim at Kade and River Pra at Assin 
Praso and Twifo Praso within the River Pra Basin (see 
map: Fig. 1). Average rainfall over the catchments of 
Kade, Assin Praso and Twifo Praso at each time step of a 
day was used as input into the model. The averaging 
process was done by using the Thiessen Polygon 
approach (Mutreja, 1986; Linsley et al., 1988; Shaw, 
1994). This approach allows area-weighted integration of 
rain gauge totals from gauges within and adjacent to the 
catchment to be used as input into the model.  
 
Using the SRIV identification algorithm and YIC and Rt

2 
as model order identification criteria a range of linear 
transfer function models relating the input (average 
rainfall) and the output (riverflow) were obtained for the 
above named riverflow stations. Due to catchment 
hydrological systems being inherently nonlinear, a time 
varying parameter (TVP) model was applied to 
investigate the form of the nonlinear behaviour in the data 
(e.g. see: Young and Beven, 1994: Chappell et al., 1999; 
Lees, 2000). The TVP model was estimated where the 
production parameter (P: see Equation 6) was allowed to 

vary whilst the recession parameter (ℜ : see Equation 6) 
was kept constant, followed by State Dependent 
Parameter (SDP) modelling with the flow representing the 
dependent state. The SDP analysis quantifies any state 
dependency in the parameter variations which is 
associated with nonlinear behaviour in the catchments. 
More detailed discussion on SDP can be found in Young 
(2001, 2006).    
 
To show the relationship between the production 
parameter and the flow, the sorted state (i.e. riverflow) 
and the sorted SDP estimates (from the SDP function) 
were plotted. Exponential relationship between them was 

Table 2. Purely linear model identification of flows of River Birim at Kade, River Pra at Assin Praso and Twifo Praso 
in the River Pra basin.  

 

Station River Model YIC Rt
2 (%) 

Kade Birim [1 1 1] -6.082 62.45 
Assin Praso Pra [1 1 1] -5.151 50.36 
Twifo Praso Pra [1 1 2] 5.371 58.41 
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investigated using an optimisation routine fitted to the 
sorted SDP parameters (i.e. non-parametric estimate). 
Following that a separate optimisation routine was then 
used to estimate the exponential parameter β (Equation 
12) for the data (i.e. parametric estimate).  
 

The routine utilises the SRIV algorithm within an iterative 
procedure to optimise the exponential parameter while the 
SRIV model residual variance was minimised. The 
exponential parameter was then used to transform the 
catchment average rainfall, into catchment-average 
‘effective rainfall’ using the EFSM (see: Equation 12) 
equation. To ensure mass balance, the catchment average 
‘effective rainfall’ was normalised in relation to the 
catchment-average rainfall using Equation 13. After the 
normalisation, the SRIV algorithm was used again to 
identify a range of transfer function models relating the 
‘normalised catchment-average effective rainfall’ to 
riverflow with their respective parameters. Using YIC and 
Rt

2, the model which explained the data well with good 
physical meaning of the estimated parameters was 
selected for each riverflow station.      
 
RESULTS AND DISCUSSION 
 
Purely linear TF modelling 
The efficiencies (Rt

2) of purely linear transfer function 
modelling of the data at all the riverflow stations 
considered within the River Pra basin ranges between 
50.36% and 62.45% (Table 2). These efficiencies are low, 
possibly due to the presence of nonlinearities as a result of 
variable antecedent moisture conditions (FAO, 1981; 
Young and Beven, 1994; Chappell et al., 2004a).  
 
The model structures of all the catchments are first-order 
(see: Table 2). These structures only give preliminary 
indication of the likely model orders and time delays 
because the linear models only have low efficiencies.  
 

 
TVP and SDP TF modelling 
Investigation of the presence of nonlinearities using TVP 
and SDP modelling as explained in above resulted in an 
SDP fit of the observed riverflows, which describes the 
rainfall-riverflow response with efficiency (Rt

2) ranging 
from 98.11 to 98.78% for all the catchments. These 
indicate that the SDP model captured almost all of the 
nonlinearities in the rainfall-riverflow behaviour within 
the catchments. This suggests that the plot of the SDP 
parameter estimates would give the full nature of the 
nonlinear behaviour of the catchments. The plots of the 
SDP parameter estimates (namely gain or ‘P’ in Equation 
6) against the riverflows are shown in figure 3. The plots 
show that the gain parameter increases with increasing 
flow, which suggests that nonlinearities are present in the 
translation of rainfall to riverflow in the catchments.  
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c) Twifo Praso 

Fig. 3. Non-parametric estimate of the rainfall flow 
nonlinearity in gain parameter (see ‘P’ in Equation 6) as a 
function of flow (blue dots) and uncertainty (blue dashed 
lines). a) River Birim at Kade b) River Pra at Assin Praso 
and c) River Pra at Twifo Praso fitted with exponential 
curve (solid red line). 
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The plot of River Birim at Kade (Fig. 3a), River Pra at 
Assin Praso (Fig. 3b) and Twifo Praso (Fig. 3c) suggest 
that the nonlinear behaviour of the riverflows within the 
River Pra Basin follow an exponential relationship 
between the gain parameter and the riverflow. From the 
plots it could be seen that as the catchment wets up the 
instantaneous runoff coefficient (i.e. proportion of rainfall 
generating riverflow) keeps increasing but gets to a point 
where it does not change. This means that as the 
catchment wets up, the runoff coefficient increases, until 
it reaches a point where the runoff coefficient remains 
constant, effectively giving a linear relationship between 
rainfall and riverflow. 
 
The estimated exponential function from the SDP 
modelling for the flows of River Birim at Kade and River 
Pra at Assin Praso and Twifo Praso are given as: 
 

( )tyKD
t eboKD 8812.01006.0 −−=   (16)     

( )tyAS
t eboAS 5999.110078.0 −−=   (17)   

 ( )tyTW
t eboTW 5433.110078.0 −−=   (18) 

where boKD, boAS and boTW are the gain parameter 
estimates and yKD, yAS, and yTW are the riverflows of 
River Birim at Kade, River Pra at Assin Praso and Twifo 
Praso, respectively. Structurally, the exponential function 
is limited to be non-negative and this is a sensible solution 
in this case – also well contained within the uncertainty 
bounds of the SDP estimates. 
 
Nonlinear TF modelling  
Final optimisation of the exponential parameter β 
(Equation 12) for the catchments, using iterative routines 
are shown in figure 4. The optimised values of β are for 
the estimation of ‘effective rainfall’ and subsequent 
modelling of nonlinear behaviour within the catchments. 
The plots suggest that, riverflow simulation is highly 
sensitive to β values. 
     
First-order modelling (Single water pathway) 
The estimates of the exponential parameter for the 
catchments, model efficiencies and the resultant 
optimised first-order nonlinear transfer function model 
parameters and statistics optimised against YIC and Rt

2 as 
the objective functions are presented in table 3. The 
model parameters and statistics estimated for an 
optimised first-order transfer function model using the 
BOSM nonlinear filter are shown in table 4. 
 
From table 3, the first-order EFSM model provides an 
excellent fit for riverflows of River Birim at Kade, River 
Pra at Assin Praso and Twifo Praso with efficiencies (Rt

2) 
of 88.26, 89.55 and 92.94%, respectively. The BOSM 
model (Table 4) gives efficiencies of 72.53, 69.71 and 
77.94%, respectively, for the same stations in the basin. 
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Fig. 4. Final optimisation of the exponential parameter of 
the EFSM (see ‘β’ in Equation 12) for the catchments for 
the estimation of effective rainfall and modelling of 
nonlinear behaviour (see: Fig. 1 for the location of the 
gauging stations). 
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The EFSM is expected to perform better than the BOSM 
model, because in the evaluation of the nonlinear 
behaviour of the catchments the EFSM model uses 
riverflow as a surrogate of sub-surface moisture, unlike 
BOSM which a priori fixes the form of the non-linearity. 
Figure 5 and 6 shows the ability of the DBM model to 
capture the key dynamics inherent in the relationship 
between the incoming rainfall and the outgoing riverflow 
within the catchments, using EFSM and BOSM models as 
nonlinear filters, respectively.  

Generally, the performance of the models, in terms of 
explanation of the model output variance is excellent for 
all the models (Table 3 and 4) but the model fit shows that 
peak flows during the major rainfall season (i.e. May to 
June) were underestimated by the BOSM model (Fig. 6). 
However, the BOSM model predicted the recession flows 
very well as compared to the EFSM model at all the 
stations. (Figs. 6a, b and c). Thus, within the River Pra 
basin the BOSM and EFSM sub-models are 
recommended for low and high flow studies, respectively, 
based on their performance (Figs. 5 and 6).   

Table 3. First-order nonlinear DBM model parameters identified for the catchments within the River Pra basin for the 
1978 water year using EFSM as the nonlinearity filter.   
 
Parameters and statistics Catchments within the River Pra Basin 

Kade Assin Praso Twifo Praso 
Area (km2) 2126.67 9347.31 20778.0 
Rt

2 (%) 88.26 89.55 92.95 
Model order [1 1 0] [1 1 0] [1 1 0] 
YIC -8.740 -9.021 -9.738 
β -0.1409 0.2226 0.2037 

ℜ  -0.8947 -0.8860 -0.8868 

σ( ℜ ) 0.0043 0.0042 0.0035 

P 0.0195 0.0132 0.0111 
σ(P) 0.0007 0.0004 0.0003 
TC (days) 8.9868 8.2618 8.3234 
σ(TC) 0.3822 0.3275 0.2780 
SSG 0.1853 0.1158 0.09828 
σ(SSG) 0.0030 0.0019 0.0013 

 

Note: Rt
2: Simplified Nash and Sutcliffe efficiency for model; Model order: [No. of denominators, numerators, pure time delays]; 

YIC: Young Information Criterion; β: exponential parameter;ℜ : recession parameter; P: production parameter; TC: time constant; 

SSG: steady state gain of the transfer function; σ( ℜ ), σ(P), σ(TC) and σ(SSG): standard deviation of parameter in the parenthesis. 
See Equation 12 (EFSM).   
 
Table 4. First-order nonlinear DBM model parameters identified for the catchments within the River Pra basin using 
BOSM as nonlinearity filter to model rainfall to riverflow for 1978 water year. 

 

Parameters and statistics Catchments within the River Pra Basin 
Kade Assin Praso Twifo Praso 

Area (km2) 2126.67 9347.31 20778.0 
Rt

2 (%) 72.53 69.71 77.94 
Model order [1 1 1] [1 1 1] [1 1 1] 
YIC -6.873 -6.315 -6.918 
τu 55 50 30 

ℜ  -0.9221 -0.9145 -0.9051 

σ( ℜ ) 0.0051 0.0069 0.0066 

P 0.0171 0.0123 0.0114 
σ(P) 0.0010 0.0009 0.0008 
TC (days) 12.3271 11.191 10.0316 
σ(TC) 0.8563 0.9827 0.7566 
SSG 0.2197 0.1434 0.1201 
σ(SSG) 0.0052 0.0040 0.0027 

Note: uτ : BOSM nonlinearity term. See Equation 11 (BOSM). 
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b) Assin Praso (EFSM) 
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c) Twifo Praso (EFSM) 

 

Fig. 5. Daily flows predicted by optimum first-order 
nonlinear transfer function EFSM model (green) against 
observed flows (blue) showing the DBM model’s ability 
to capture the dynamics of the rainfall to riverflow 
generating mechanism in the catchments within the River 
Pra basin (i.e. from March 1, 1978 to February 28, 1979) 
(See: Table 3 for the models). 

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Day

F
lo

w
 (

m
m

)

Blue-gauged
Green-model
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b) Assin Praso (BOSM) 
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c) Twifo Praso (BOSM) 

 

Fig. 6. Daily flows predicted by optimum first-order 
nonlinear transfer function BOSM model (green) against 
observed flows (blue) showing the DBM model’s ability 
to capture the dynamics of the rainfall to riverflow 
generating mechanism in the catchments within the River 
Pra basin for the 1978 water year (i.e. from 1st March, 
1978 to 28th February, 1979). (See: Table 4 for the 
models). 
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Higher-order modelling (multiple water pathways) 
The presence of multiple runoff pathways in the 
catchments was also investigated using YIC and Rt

2 as the 
objective functions in higher-order modelling (up to 
fourth order). The results are shown in table 5 and 6 for 
the EFSM and BOSM models, respectively. From the 
tables, comparison of the Rt

2 and YIC of the higher-order 
models to those of the first-order models in the basin 
show reduced Rt

2 values and higher YIC values of the 
higher-order models. For instance, at Kade, Rt

2 and YIC 
of the first-order model reduced from 88.26% and -8.740 
to 84.51% and -7.869, at Assin Praso from 89.55% and -
9.021 to 88.45% and -7.302 and at Twifo Praso from 
92.94% and -9.738 to 89.27% and -7.41, respectively, for 
the higher-order models. Similarly, the BOSM also shows 
reduction in Rt

2 and less negative YIC values at all the 
stations (Table 6). Thus, comparison of the model 
efficiencies and YICs of the first-order models to those of 
the higher-order models indicate that higher-order models 
could not be justified for the catchments despite the 
improvement in the fit of mid and late recessions (Fig. 7). 
Thus, a single pathway dominates the catchments 
behaviour in routing rainfall to riverflow in the basin. 
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b) Assin Praso (EFSM) 
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c) Twifo Praso (EFSM)                                                                               
     
Fig. 7. Daily flows predicted by optimum second order 
nonlinear transfer function model (green) against 
observed flows (blue) showing the DBM model’s ability 
to capture the dynamics of the rainfall riverflow 
generating mechanism in the catchments within the River 
Pra basin for the 1978 water year (i.e. from March 1, 1978 
to February 28, 1979) (see: Table 5 for the models). 
 
Final first-order models identified for the catchments 
Based on the EFSM parameterisation of the nonlinearity 
(see: Table 3), mathematical relationships between 
rainfall input and riverflow output with no initial pure 
time delay were identified for the catchments  i.e. Kade, 
Assin Praso and Twifo Praso. These are as follows: 

Kade:                    
tt UeKD

z
Q

18947.01

0195.0
−−

=  (19)     

Assin Praso:          
tt UeAS

z
Q

18860.01

0132.0
−−

=  (20) 

Twifo Praso:         
tt UeTW

z
Q

18868.01

0111.0
−−

=  (21) 

where tUeKD , tUeAS , and tUeTW  are ‘normalised 

catchment effective rainfall’ inputs for Kade, Assin Praso, 

and Twifo Praso,  respectively and 1−z  is the backward 
shift operator. The no pure time delay for the flows 
suggests that rainfall is more rapidly seen as riverflow in 
the basin.  
 
Table 7 shows the performance of the DBM models 
compared with conceptual and physics-based models 
which have been applied in Ghana and the neighbouring 
countries. The Table shows that the performance of the 
simple first-order DBM TF models which require only 
four parameters, namely exponential parameter (β), 
recession parameter (ℜ ), production parameter (P), pure 

time delay (δ ) gives efficiencies for similar African 
catchments (of a range of sizes) which are no smaller than 
those of complex conceptual or physics-based models.  
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Other studies which demonstrates that the DBM TF 
rainfall-riverflow modelling technique performed 
efficiently with smaller number of parameters and data 
inputs can be found in Young and Beven (1994), Young 
et al. (1997), Chappell et al. (1999, 2004a, 2004b, 2006), 
Lees (2000), Young (1992, 1993, 1998, 2001, 2002, 
2005), Mwakalila et al. (2001), Vongtanaboon (2004), 
Vongtanaboon and Chappell (2004), Romanowicz et al. 
(2006), among others. 
 
Results: Uncertainty analysis of derived parameters 
Time Constant (TC) and Steady State Gain (SSG) 
 
In order to compare DRCs between the catchments (or 
with published data) the uncertainty in the estimated 
DRCs must first be investigated. The uncertainty on the 

DBM TF model parameters (i.e. recession parameter; ℜ  
and production parameter; P) was determined by 
assuming that the residuals follow a normal distribution 
(Young, 2003). It was necessary to quantify the 
uncertainty in the TC and SSG using Monte Carlo 
Simulation (MCS: see Young, 1998, 2001, 2003) 
analysis. MCS analysis is the simulation of a model where 
the model is run several times (in this study with 10,000 
realisations) using different sets of parameters (here TC 
and SSG) which were selected randomly from the model-
predicted standard error about the gain or production 

parameter (P) and the recession parameter (ℜ ).  
 
Figure 8 shows the results of the analysis using 10,000 
random realisations for River Pra at Twifo Praso. The 
distribution of the TC and SSG of the models for the other 
stations in the basin (not presented) were similar to that of 
Twifo Praso. The Figure suggests that the SSGs and TCs 
are symmetric about their means and so comparable with 
the mean value derived earlier. For instance, for River Pra 
at Twifo Praso mean SSG is 0.0983, estimated SSG = 
0.0983, mean TC = 8.3501 days, estimated TC = 8.3234 

days. The above indicates that the derived SSGs and TCs 
from the DBM TF parameter estimates follow normal 
distribution and are not highly uncertain.  
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Fig. 8. Histogram of Monte Carlo analysis to evaluate the 
uncertainty associated with the derived parameters; steady 
state gain (see Equation 7) and time constant (days: see 
Equation 8) of the TF DBM model of River Pra at Twifo 
Praso showing well defined distribution about the means.   

Table 5. Comparison of YIC and Rt
2
 of identified first-order and high-order nonlinear models using EFSM as the 

nonlinearity filter for the flows within the River Pra Basin.  
 

Station First-order model Higher-order model 
Rt

2 (%) YIC model order Rt
2 (%) YIC model order 

Kade 88.26 -8.740 [1 1 0] 84.51 -7.869 [ 2 2 2 ] 
Assin Praso 89.55 -9.021 [1 1 0] 88.45 -7.302 [ 2 2 1 ] 
Twifo Praso 92.94 -9.738 [1 1 0] 89.27 -7.41 [ 2 2 2 ] 

 
Table 6. Comparison of YIC and Rt

2 of identified first-order and high-order nonlinear models using BOSM as the 
nonlinearity filter for all the gauging stations.  

 

 
Station 

First-order model Higher-order model 
Rt

2 (%) YIC model order Rt
2 (%) YIC model order 

Kade 72.53 -6.875 [ 1 1 1 ] 70.99 -5.956 [ 3 1 2 ] 
Assin Praso 69.71 -6.349 [ 1 1 1 ] 61.65 -5.423 [ 3 1 0 ] 
Twifo Praso 78.44 -6.928 [ 1 1 2 ] 76.83 -6.135 [3 1 0] 
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Results: Hydrological interpretation of estimated 
model parameters 
Within the DBM methodology, hydrological/physical 
interpretation of the identified parameters associated with 
the model is very important and cannot be over-
emphasised (Young, 2005). DBM models using the 
EFSM sub-model produced the most statistically sound 
models, and so it is these models that are interpreted 
physically/hydrologically. The parameters in the TF 
equations (Equations 19 - 21) to be considered are: 

exponential parameter: β, recession parameter:ℜ , 

production parameter: P, pure time delay:δ , and the 
associated dynamic response characteristics (DRCs) i.e. 
the steady state gain: SSG, and time constant: TC.  

Pure time delay (δ  ) 
 The pure time delay is defined as the response time for 
rainfall to be first seen as riverflow. The value for a 
catchment is large if a) the rainfall is disconnected from 
the water table, i.e. it includes large unsaturated zone 
storage or b) rainfall is located only in its headwater sub-
catchments.  No pure time delay was identified for all the 
catchments (Table 3). This means rainfall is rapidly seen 
as riverflow.   
 
In Thailand, a humid tropical region like Ghana, within 
the X113, P47 and P14 catchments which are of size, 129, 
521 and 3853 km2, respectively, Vongtanaboon (2004) 
estimated no pure time delay (Table 8). Similarly, in the 
0.133 km2 C1 Bukit Berembum catchment in Malaysia, 
Chappell et al. (2004a) estimated zero pure time delay. 
Again in Malaysia, Chappell et al. (2006) obtained a 
value of 15 minutes, for the 0.44 km2 Baru catchment. 
The data series were in 5 minutes time-step implying time 
delay of 3. Examples, of estimates of pure time delay of 
catchments in temperate conditions can be seen in table 8.  

One would have expected that, the large catchments in the 
River Pra basin with long rivers would have had long pure 
time delays if rainfall fell only in the headwaters. Thus, 
perhaps the catchments have similar rainfall in the 
downstream areas. The small catchment of River Nabogo 
in the North of the same country (see: Fig. 1 for location) 
has a delay of a day (see: Table 8) possibly due to the 
relative dryness of the catchment (Acheampong, 1988; 
Kranjac-Berisavljevic, 1999; FAO, 2005; Ahenkorah et 
al., 1994) or disconnected deep groundwater storage 
(Bates, 1962b).  
 
This study and the above observations suggest that, 
perhaps, pure time delay may not solely depend on 
catchment size. 
 
Exponential parameter (β) 
The exponential parameter β estimated for the catchments 
in the River Pra basin are River Birim at Kade: -0.1409 
and River Pra at Assin Praso: 0.2226, and Twifo Praso: 
0.2037 (Fig. 4). A value of 0.0124 was obtained for the 
Leaf River catchment located in Collins, Mississippi in 
the USA by Young (2006). Hydrological interpretation of 
this parameter is that the higher the β value, the more 
quickly the runoff coefficient increases with increasing 
storage, and the greater the resistance to antecedent 
moisture conditions.  
 
Time constant (TC) 
Time constant (TC) is a measure of the ‘residence time’ 
of rainfall in the catchments (Young, 2003, 2005; 
Chappell et al., 2006), calculated by using Equation 8. TC 
for the catchments within the River Pra basin is River 
Birim at Kade, approximately: 9.0 days [7.78 – 10.74 
days] and River Pra at Assin Praso: 8.26 days [7.22 – 9.75 
days] and Twifo Praso: 8.32 days [7.42 – 9.55 days] with 

Table 7.  Model efficiency (Rt
2: see Table 3) of identified DBM models compared with that of conceptual and physics-

based models which have been applied to catchments in Ghana and neighbouring countries i.e. Ivory Coast, Burkina 
Faso and Benin based on model estimation.  
 

Model Type Catchment River Area (km2) Country Rt
2 (%) Reference 

GR2M CCM Samien Sasandra 29,300.0 Ivory Coast 89.0 Paturel et al.(2003) 
WBM CCM Samien Sasandra 29,300.0 Ivory Coast 46.0 Paturel et al. (2003) 
GR2M CCM Bada Bandama 24,075.0 Ivory Coast 81.0 Paturel et al. (2003) 
WBM CCM Bada Bandama 24,075.0 Ivory Coast 69.0 Paturel et al. (2003) 
GR2M CCM Samandeni Moohoun   4,575.0 Burkina Faso 84.0 Paturel et al.  (2003) 
WBM CCM Samandeni Moohoun   4,575.0 Burkina Faso 68.0 Paturel et al.  (2003) 
SAMULAT-H PBM Upper Aguima Queme          3.2 Benin 82.0 Geirtz et al. (2006) 
SAMULAT-H PBM Upper Niao Queme          3.1 Benin 67.0 Geirtz et al. (2006) 
ACRU CCM Manhia Densu   2100.0 Ghana 82.0 Bekoe (2005) 
EFSM DBM Kade Birim   2126.67 Ghana 88.3 This study 
EFSM DBM Assin Praso Pra   9347.31 Ghana 89.6 This study 
EFSM DBM Twifo Praso Pra  20778.0 Ghana 93.0 This study 

 

CCM: Conceptual model, PBM: Physics based distributed model, DBM: Data-based mechanistic, EFSM: Exponential function sub-model. 
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the uncertainty on the estimated values given in the 
brackets. These indicate that within the River Pra basin all 
the catchments (ranging in size from 2126 to 20778 km2) 
have similar residence time for rainfall to appear as 
riverflow.  
 
Within the Malaysian rainforest (i.e. in similar climatic 
conditions), using the same DBM methodology (Chappell 
et al., 2004a, 2006), entirely different time constants were 
obtained for the 0.44 km2 Baru and the 0.133 km2 Bukit 
Berembun C1 catchment (see: Table 8). Chappell et al. 
(2006) attributed the vast difference in the time constant 
to the different geological formation underlying each 
catchment. In Northern Thailand, in the P14 and P47 
catchments, located in the same climatic conditions 
(Boochabun et al., 2004; Vongtanaboon, 2004) and 
underlain by similar geology (Table 8), Vongtanaboon 
(2004) estimated similar time constants for these 
catchments using the same DBM approach (Table 8).  
 
The similar time constants identified for the catchments in 
the River Pra basin are possible, because the catchments 
lie within the same climatic condition (i.e. wet semi 
equatorial) and vegetational zone (i.e. forest zone) and 
have soil cover which is predominantly Acrisols (i.e. 
Forest Ochrosol). The whole basin is also principally 
underlain by the same geological formation (i.e. the 
Birimian formation) with a small section in the middle of 
the basin underlain by the Tarkwain formation (Bates, 
1962a; Dickson and Benneh, 1988; Atta-Qauyson, 1999). 
The Birimian formation consists of mainly granitoids 
(Ahenkorah et al., 1994) whilst the Tarkwain formation 
consists of sandstones, schists, quartzite, and phyllites 

(Dickson and Benneh, 1988; Bates, 1962a). The 
catchments also have similar topography, which stretches 
through a sequence of gently rolling hills with general 
elevation of between 250m and 300 m above sea level 
(Dickson and Benneh, 1988). 
 
The time constant of River Nabogo located in the 
northern part of the same country estimated by Ampadu 
(2007) using daily time series of rainfall and riverflow 
and that of the catchments estimated by Amisigo (2005) 
compared with that of the catchments in the River Pra 
basin (Table 8) indicates that they are similar in residence 
time. The climate, vegetation and geological formation 
underlying these catchments are different resulting in 
different types of soil cover through weathering. The soil 
cover in the River Pra basin is predominantly Acrisols 
(locally called ‘Forest Ochrosol’) which is deeply 
weathered and well drained (Brammer, 1962; Ahenkoral 
et al., 1994; Attah-Quayson, 1999). It is possible rainfall 
within the catchments percolates much deeper into and 
through the soil before it ends up as riverflow. Deep 
movement of water in regolith beneath Acrisol on granite 
and its impacts on rainfall-riverflow processes have been 
observed by Chappell et al. (2007), in catchments within 
the South East Asia. 
 
The Nabogo, Koumangou and Porga catchment which are 
located in the northern part of the country are underlain 
by the Voltain formation which consists of sandstone, 
shale, mudstones, and limestone (Bates, 1962a; Boateng, 
1966; Dickson and Benneh, 1988). The soil cover is 
predominantly Plinthosol (locally called ‘Groundwater 
Laterites’) which is poorly drained and shallow 

Table 8.  Comparison of time constants of first-order DBM models of catchments in different climatic regions ranked 
by size 
 

Catchment Area (km2) Climate 
regime 

Geology TFM NLF Time 
constant 

Reference 

Plot 0.000015 Temperate Acid soil [1 1 0] SSSM 14.5 minutes Fawcett et al. (1997) 
C1 0.133 Humid tropical Saprolite [1 1 0] SSSM 23 days Chappell et al. (2004a) 

Baru 0.44 Humid tropical Mudstone [1 1 3] BOSM 37 minutes Chappell et al. (2006) 
Coalburn 1.50 Temperate Mudstone [1 1 0] BOSM 8.6 hours Chappell et al. (2006) 
Bottoms 10.60 Temperate Limestone [1 1 1] BOSM 8.3 hours Chappell et al. (2006) 

X113 129 Humid tropical Sedimentary [1 1 0] SSSM 2.3 days Vongtaboon  (2004) 
P47 521 Humid tropical Metamorphic [1 1 0] SSSM 6.14 days Vongtaboon  (2004) 
P14 3853  Humid tropical Granite/Metamorphic [1 1 0] SSSM 7.28 days Vongtaboon  (2004) 

Nabogo 1950.00 Tropical 
continental 

Voltain [1 1 1] SSSM 10.13 days Ampadu (2007) 

Kade 2126.67 Humid tropical Birimian [1 1 0] EFSM 8.99 days This study 
Koumangou 6070.00 Tropical 

continental 
Voltain [1 2 1] SSSM 12.10 days Amisigo (2005) 

Assin Praso 9347.31 Humid tropical Birimian [1 1 0] EFSM 8.26 days This study 
Twifo Praso 20778.00 Humid tropical Birimian/Tarkwain [1 1 0] EFSM 8.32 days This study 

Porga 27197.00 Tropical 
continental 

Voltain [1 2 0] SSSM 8.21 days Amisigo (2005) 

 

Note: TFM: Transfer function model structure; NLF: Non linear filter; SSSM: Store surrogate sub-model Equation 9; BOSM: Bedford Ouse sub-
model Equation 10 and 11; EFSM: Exponential function sub-model Equation 12. [No. of denominators, numerators, pure time delays].    
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(Brammer, 1962; Attah-Quayson, 1999). One would have, 
therefore, expected that the shallow and poorly drained 
catchment in the North would be flashier (i.e. shorter 
residence time) than the catchments in the forest area but 
this is not the case. The catchments in the North does, 
have a rock aquifer beneath (Bate, 1962b) increasing the 
time constant to about 10 days. Declining groundwater 
levels attributed to the numerous (3000) abstraction 
boreholes drilled in the North have been reported by 
Gyau-Boakye and Tumbulto (2000) and FAO (2005). 
Over time, this might lead to a longer time constant. 
 
The observations in Malaysia and Thailand coupled with 
the results in the River Pra Basin and the studies from 
other climatic regions which are shown in Table 8, 
suggest that time constant may be highly influenced by 
the nature of the geological formation and regolith 
underlying a catchment. Time constant may be used to 
predict the type of geological formation and regolith 
underlying a catchment, especially in catchments located 
in similar climatic conditions with similar topography and 
soil cover. 
 
Steady state gain (SSG) 
The steady state gain (SSG) calculated by using Equation 
7, demonstrates the relationship between the equilibrium 
input (rainfall) and output (riverflow) of the DBM TF 
model and indicates physical losses (i.e. SSG < 1) or gain 
(SSG > 1) in the system (catchment) (Young, 2005). This 
DRC is analogous to runoff coefficient (RC) which is a 
measure of how much of the gross total rainfall (for 
example in a water year) appears as riverflow after 
evaporation and transpiration losses. For instance, RC of 
say 0.2 of a catchment over one year or more indicates 

that 80% of the rainfall has been lost through evaporation 
and transpiration with the remaining 20% appearing as 
riverflow.  
 
The SSGs obtained for the catchments in the River Pra 
Basin (Table 9) are Kade: 0.1853; Assin Praso: 0.1158; 
and Twifo Praso: 0.0983 for the 1978 water year (i.e. 
from 1st March, 1978 to 28th February, 1979). These 
estimates are comparable to those estimated in the tropics, 
by Vongtaboon (2004), for the 3853 km2 P14, 521 km2 
P47 and 129 km2 X113 catchments which are 0.2447, 
0.1211 and 0.1998, respectively. These indicate, as 
expected, that there are high losses within all the 
catchments which is typical of tropical conditions due to 
high rates of evaporation. For example, from table 10, 
SSG of 0.1853 of River Birim at Kade indicates that with 
average annual rainfall of 1187.4 mm, during the 1978 
water year, about 81.47% which is 967.37 mm is lost 
through evaporation and transpiration leaving only 
18.53% (i.e. 220 mm), to appear as riverflow.  
 
The annual evapo-transpiration rates in the forest zone of 
Ivory Coast for the Tai II and Banco II catchments are 
1363mm/year and 1195mm/year respectively, and that of 
the Guma catchment, in Sierra Leone is 1146 mm/year, 
all in West Africa (Bruijnzeel, 1990). In the forest zone of 
East Africa Bruijnzeel (1990) reports of similar evapo-
transpiration rates of 1337mm/yr for Kericho catchment 
in Kenya and 1381mm/yr for Mbeya catchment in 
Tanzania and in South East Asia, 1170mm/yr for the 
Ciwidey catchment in Indonesia.  These values are 
comparable to the observed and DBM estimates for the 
catchments in the forest zone of Ghana. This indicates 

Table 9. Comparison of steady state gain (SSG) and riverflow coefficient (RC) of the catchments in the River Pra basin 
for the 1978 water year (i.e. from March 1, 1978 to February 28, 1979) 
 

Catchment 
Area 
(km2) 

AR 
(mm) 

AF 
(mm) 

RC=AF/AR 
 

SSG 
 

Kade 2126.67 1187.40 263.97 0.2223 0.1853 
Assin Praso 9347.30 1236.30 164.32 0.1329 0.1158 
Twifo Praso 20778.00 1425.20 157.70 0.1107 0.0983 

 

AR: Annual catchment average rainfall, AF: Annual riverflow leaving the catchment.    
 
Table 10. Comparison of observed (ETO) and DBM estimate (ETM) of evapo-transpiration losses and possible 
catchment leakages of the catchments in the River Pra basin for the 1978 water year (i.e. from March1, 1978 to 
February 28, 1979).  
 

Catchment 
AR 

(mm) 
AF 

(mm) 
SSG 

 
ETO=AR-AF 

(mm) 
ETM= (1-SSG)×AR 

(mm) 
Kade 1187.4 263.97 0.1853 923.43 967.37 
Assin Praso 1236.3 164.32 0.1158 1071.98 1093.14 
Twifo Praso 1425.2 157.70 0.0983 1267.50 1285.10 

 
AR: Annual catchment average rainfall, AF: Annual riverflow leaving the catchment, SSG: DBM model estimate of steady state 
gain.  
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that the estimates are reasonable and probably, there are 
no leakages in the catchments.         
In Ghana, according to Bates (1962b) generally, only 
about 1 to 10 per cent of rainfall ends up as riverflow in 
the rivers. This observation was based on few streams 
which were gauged around that time. However, the DBM 
model estimate of 18.53, 11.58 and 9.83% of the rainfall 
to appear as riverflow for  Kade, Assin Praso and Twifo 
Praso catchments, respectively, are in agreement with the 
observation by Bates (1962b).       
 
Table 9 reveals that, there is no significant difference 
between the catchments RCs (i.e. actual water balance 
term) and their SSGs (i.e. model water balance term). The 
slight difference between them might be due to modelling 
error. This suggests that the SSGs from the DBM TF 
model could be used as a sufficient representation of 
catchments actual water balance. However, recently, 
Chappell et al. (2006) have introduced a procedure where 
the effective rainfall is normalised to give SSG the same 
as the RC.  
 
CONCLUSION 
 
The DBM transfer function rainfall and riverflow 
modelling approach is very robust (Young, 1998, 2001; 
Lees, 2000) and has been used effectively to model 
rainfall and riverflow behaviour of large catchments in the 
forest zone of southern Ghana. The approach was applied 
to catchments of size between 2126.67- 20778km2 and the 
following conclusions can be drawn: 
 
1. The DBM TF modelling process through SDP 

analysis has revealed the nature of nonlinear 
behaviour for the riverflow generation process in the 
forest zone of Ghana. Thus, exponential distribution 
which implies that within the forest zone, as the 
catchment wets up the instantaneous runoff 
coefficient (i.e. proportion of rainfall generating 
riverflow) increases up to a point and remain constant 
where riverflow generation becomes a linear 
relationship between rainfall.  

2. The estimated parameters exponential parameter (β), 
recession parameter (ℜ ), production parameter (P), 

pure time delay (δ ) and the associated dynamic 
response characteristics (DRC) of time constant (TC) 
and steady state gain (SSG) suggest that riverflow 
generation within the catchments were not flashy and 
that their response is dominated by single water 
pathway.  

3. Analysis of the time constants suggests that the 
riverflow behaviour within the catchments is similar, 
with all of the catchments having high storages 
averaging about 8.5 days. The similar storages within 
the catchments have been linked to the similar 

geologies underlain them (Bates, 1962a; Boateng, 
1966; Dickson and Benneh, 1988).  

4. Comparison of the estimated SSG (i.e. the model 
water balance) with the RC (i.e. catchments actual 
water balance term) showed no significance 
difference between the two parameters thus, SSG 
could be used as a sufficient representation of the 
catchment water balance.  

5. The analyses of the estimated TCs coupled with 
estimates from other climatic regions indicate that 
riverflow generation processes within a catchment is 
highly influenced by the geological formation 
underlying the catchment and that with a known time 
constant it may be possible to predict the nature of 
the geology underlain a catchment if the catchment is 
located within the same climatic conditions with 
similar vegetation, soil cover and topography. 

6. The DBM modelling has led to development of 
mathematical relationships between rainfall and 
riverflow which could be used in simulating flows in 
the basin. The approach is recommended for the 
forecasting of riverflow in the country which would 
greatly improve the government’s planning of water 
supply provision in the country.  
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