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ABSTRACT

Within the Data Based Mechanistic (DBM) Transfen€&iion rainfall to riverflow modelling approach aathematical
model in the form of a transfer function rainfall tiverflow is obtained by extracting informatiorof the available
time series data. The DBM methodology is able @ the data to identify the model structure in ajective statistical
manner using the simplified recursive instrumen@liable algorithm (SRIV). The approach requires fegpatially-
distributed data for the estimation of the modeld &, therefore, suitable for data limited regidike West Africa.
Within this paper we present a review of the agpicn of the model in hydrological studies in diffet climatic
conditions. The application of the approach todangsted catchments in the humid rainforest zorghiana have also
been presented. The approach revealed an expdrfentinof non-linear behaviour for the catchmenitke estimated
model parameters and the associated dynamic resmbasacteristics (DRCs) of time constant (TC) arehdy state
gain (SSG) indicates that riverflow generation witthe catchments are not flashy. The model idedtimathematical
relationships which could be used to simulate flawthe catchments.

Keywords: Ghana, dbm model, rain forest, transfer function.

INTRODUCTION 1999; Young, 2001; Chappedt al., 2006). One of such

approaches is the relatively new Data-Based Meslkiani
Rainfall-riverflow modelling provides the meansr the  (PBM) modelling routines (Young and Minchin, 1991; _
investigation of the interaction between climated an Young and Lees,. 1993; Young and Beven, 1994,
riverflow. Understanding the dynamic link between Chappelletal., 1999; Lees, 2000).

rainfall and riverflow response can also give geeat o ]
understanding of rainfall-riverflow processes tigbou 1he Data-Based Mechanistic (DBM) modelling approach

hydrologic interpretation of the Dynamic Response(Young and Lees, 1993; Young and Beven, 1994; Ypung
Characteristics (DRCs) of a catchment. This reguine ~ 2001; Chappelkt al., 1999) involves three steps, which
use of extensive historical records which are gaher @€ a) extraction of information from the rainfalhd

lacking in Africa, as highlighted by Giles (2005pca riverflow records by fitting models to the data, b)
Weston and Steven (2005). identification of a range of transfer function mtdand

their associated hydrological system parametersgusi
In West Africa, the dearth of meteorological datasery ~ Objective statistical tests and c) selection of thedel
common, as pointed out by van de Giesgea. (2002). with the most plaus!ble phy3|9allhydrolog|cal expton
In Ghana, the situation is not far different frorther ~ ©Of the data. Unlike physics-based and conceptual
African countries; hydrological and meteorologicilta Modelling approaches, it is based on the conceptetty
of the country are inadequate and of poor qualitih the ~ the data is allowed to suggest the type of modethvts
exception of a few stations (Adiket al., 1997). compatible with the input and output data in a lststic
Generally, rainfall and riverflow stations in thiepics are manner. The mechanistic nature of the final stagthe
of low density and in some areas of interest; tuisite appro.ach allows the physical interpretation of the
data is simply not available (Douglas, 1999). Safithe  resulting model.

recording instruments are no more in existenceleathie ) ) ]
existing ones are deteriorating. This calls for tse of 1h€ DBM Transfer Function (TF) modelling approash i

models that can handle few data inputs, and quatitg ~ One of the routines within the DBM-CAPTAIN package
effects of sometimes poor data quality on modefTaylor et al., 2007) used in hydrological modelling (e.g.
structures and parameters to be interpreted (Yetah, S€€: Young and Beven, 1994; Youetgal., 1997; Lees,
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2000; Mwakalilaet al., 2001). The modelling routine is In reservoir sedimentation analysis, the methodoloas
capable of revealing possible hydrological pathway$een applied successfully by Prige al. (2000) and
within a catchment (Chappedt al., 1999; Young, 2001; Rowanet al. (2001). The maiden application of the model
Vongtanaboon and Chappell, 2004) and estimates tha Africa has been reported by Mwakaligga al. (2001).
parameters or DRCs associated with the differemw fl The model was used successfully to predict riverflo
pathways (Youngt al., 1997; Chappekt al., 1999). generation in a semi-arid environment in TanzaBkist
Africa. Recently, in the same country, Vigietkal. (2006)
Within the DBM transfer function rainfall to rivdofv ~ have reported of the successful application of the
modelling approach, an optimal mathematical refetidp  approach in a humid tropical rainforest catchmemt t
relating rainfall (input) to riverflow (output) ithe form  simulate overland flow. The application of the apwh
of transfer functions with its associated paransetisr in the Volta basin in West Africa has also beerorsgd
obtained. Generally, the identified model structureby Amisigo (2005).
includes nonlinear components due to the effects of
nonlinearity as a result of antecedent moisturthénsub- The aim of this study is to apply DBM TF rainfall-
surface. The optimal model is selected from a raofge riverflow modelling approach to study rainfall to
model structures using objective statistical testd the riverflow behaviour within large nested forest tatents
model structure’s consistency with physical/hydgital  in Ghana. The specific objectives are a) to irngest the
theory. One of the major advantages of this mauglli applicability of the DBM transfer function rainfatio
procedure over conceptual hydrological modelsas the  riverflow modelling approach in large nested catehts
structure is objectively identified as part of thhedelling in tropical rainforest within the River Pra basimGhana,
procedure. The DBM model is robust and parsimoniousising daily time-series, b) to identify the mathéow
as compared to the traditional modelling approa¢kas  relationships between the catchment average raiafial
physics-based models), as it minimises the numiber aiverflow, and estimate their accompanying paramsete
parameters while producing models with a highwith uncertainty and c) to give physical interptieta of
simulation efficiency (Chappellet al., 2006). It is, the estimated parameters of the identified modeléb)
therefore, suitable for data limited region suchAfisca  and the accompanying Dynamic Response Charaatsristi
in general and Ghana in particular. (DRCs).

The DBM concept has been applied successfully imThe study catchment and data series used in the
rainfall-riverflow modelling (e.g. see: Young, 199901; analysis

Young and Beven, 1994; Young al., 1997; Young, The study was conducted using rainfall and rivevfttata
1998; Beven, 2001; Lees, 2000) and flood forecgstinfrom the River Pra Basin which lies in the foreshe of
(Leeset al., 1994; Lees, 2000; Young, 2002, 2006) in Ghana within latitude 5° and 7° 30" N and longitQéland
humid temperate conditions. In the tropics, Chapgiedl. 2° 30" W, respectively (Fig. 1) with catchment ada
(1999, 2004a, 2004b, 2006) report of the applicatd 20778 kni. It is the largest basin in the forest zone of
the approach to the short-term behaviour of thefali =~ Ghana and has enough water which is capable of
riverflow system and rainfall-suspended sedimestesy  generating hydropower (Dickson and Benneh, 1988¢ T
of the 0.44 krfi Baru catchment in Borneo, Malaysia. The basin lies in the Wet Semi-Equatorial climatic zaviéh
model has a 5 minutes resolution and explained 80éb climate that is influenced principally by the trogi
90% of the variance, respectively. In Thailand, themaritime (monsoon) and continental (harmattan) air
approach has been applied successfully to modefathi masses. Two distinct seasonal rainfall distribigigne.
and riverflow behaviour in large rainforest catclmse the bi-modal distribution) are normally experiendedhe
(Vongtanaboon, 2004; Vongtanaboon and Chappellarea which usually commences in March peaking atoun
2004). Vongtanaboon and Chappell (2004) report ithat June with dry spell in August, peaking again int8aypber
the North Western Thailand, within the Mae Chaemand October. The rainfall pattern generally dictatiee
catchment (3853 kA the output of the DBM model riverflow totals (Fig. 2) where most of the rivers the
suggests that 97% of water flow to the river travedbng  basin are permanent; flowing throughout the yedre T
with relatively little storage (time constant oR21days). underlain geology of the basin is principally Biiam
Again within Thailand, recently Vongtanaboa al. rocks with a section in the middle underlain byKieain
(2008) have utilised the technigue to model a largdormation with soil cover which is predominantly
monsoon dominated catchment. Chapptllal. (2006)  Acrisols (Forest Ochrosols). The Pra basin is dfonal
have applied the model to simulate the sensitigfy and global importance due to cocoa, timber angalin
streamflow behaviour to different densities of sldd production in addition to food crops and mining
vehicle trails within a managed rainforest in Barne industries.

Malaysia.
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Fig. 1. Map of Ghana showing the location of thected gauging stations (i.e. small red triangieshe River Pra
basin at Kade on River Birim, and Assin Praso amifal Praso on River Pra used in the DBM transferction
rainfall-riverflow modelling and the drainage basin Ghana.
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Average rainfall of River Pra in the Assin Praso catchment (9347.31km2) : 1978
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Fig. 2. Daily rainfall and flows of River Pra at #is Praso for the 1978 water year (from March I,8& February
28, 1979) showing the bimodal regime of rainfalthie Forest zone which is followed by riverflow.

The data series used were daily riverflow (cumecs) MATERIALS AND METHODS
daily rainfall (mm) obtained from the Hydrological
Services Department (HSD) and Meteorological Sessic Linear transfer function model (LTFM)
Department (MSD), respectively in Accra, Ghanawdo The general form of linear transfer function (sengiput-
from River Birim gauged at Kade and River Pra gaugie single output) which forms the basis of the transfe
Assin Praso and Twifo Praso were used (Fig. 1). Théunction model (TFM) package is given by
riverflow data in cumecs were converted to millinest 77t
per day using the respective catchment areas of thy, = o U s T& (1)
selected gauging stations (Table 1). z

o N . g dwhere the transfer function polynomials are defiaed
Table 1.Catchment sizes for River Birim at Kade an -1\ _ -1 -2 -N
River Pra at Assin Praso and Twifo Praso in theeRRra A(Z )_ 1+az"+a,2" +....8,2 2)
basin (see Fig. 1 for the location of the gaugtagens) B(z‘l) =b, + blz"1 + bzz'2 +....0by, zM 3

where y is the observed riverflowl, is ‘effective

. Gaugin Catchment Area -
River Statgi]ong (km?) rainfall’, z is a backward shift operator (ik.qut = ut_q)
Birim Kade 2126.67 and O is the pure time delay (i.e. delay between rainfal
Pra Assin Praso 9347.31 and initial river response). Thd and M represent the
Pra Twifo Praso 20778.00 number of a and b parameters, respectively. The

residuak is defined as
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£ =Y, _Qt %) whereSSG is the steady state gain (water balance term);
B( TC is the time constant (residence time) dngl, is the

Q== z ] 5 (5) sampling interval (in this study a day). T88G indicates
Azt the amount of the rainfall which appears as riosvfl

. ~ ~f following evapo-transpiration and other losses,|l&v/hiC
1 1 ’
whereQ: is the model outputA(Z ) and B(Z ) arethe s 5 measure of the residence time of the rainifathe

estimated TF polynomials iz " of Equation 2 and 3, catchment.

;gspecgvely agdlb_r:s the. est|matefd hpure t'mT dilaY' In aModeIIing non-linearities in hydrological behaviour
irst order model the estimates of the TF polyndm&@e  the hygrological process of the translation of falrinto

A

é(z‘l):ﬁo andA(Z_l)=1+ 42" Term b, is the riverflow is inherently nonlinear due to the effeasf

system production or gain parameter estimate (@téw varying subsurface moisture (FAO, 1981; Young and

balance’ term) which scales the difference in totaIBeven’ 1994). To model this non-linearity, the efife

] ~ i rainfall U in Equation 1 is often related to the actual
volumes of input and output ar# is the recession or lag rajinfall R and the observed flow y by a nonlinear function
parameter estimate which is linked to the ‘residetime’  (e.g. a power law: see: Young and Beven, 1994; méiap
of the response in the catchment. The derivation ot al., 1999; Beven, 2001).

Equation 1 can be found in Beven (2001a). According

Young (2003) the residualg(; noise term) accounts for Power law sub-model (SSSM) . o

In the power law application, the effective raihfal in
(Equation 1) is linked with the actual rainf&land the
observed flow y by a power law relationship whih i
referred to as the store—surrogate sub-model (S<Bil)
is defined by Young and Beven (1994) as:

all the riverflow not explained b€ and includes factors
such as the modelling error, noise in the dataeffects
of unobserved inputs and spatial heterogeneity hien t
rainfall data. The order of the transfer functioondal is

defined by the triadN, M, O ]. WhereN andM represent _ .

the number ofa andb parameters in Equations 2 and 3, U =R¥ ©)

respectively and) is the pure time delay. wherea is the estimate of the power law exponent which
is a measure of the sensitivity of the catchment to

Depending on the nature of the dominant pathwagisinvi  @ntecedent moisture conditions. The tern usually
a catchment, a first-order transfer function mogile: ~ anges between zero and unity (Beven, 2001a) with t
Young, 1992, 1993; Young and Beven, 1994: Chamell value of unity indicating higher sensitivity andraeno
al., 1999, 2004b) or a higher-order model (see: Youn%ens't'v'ty’ i.e. the linear model (Equation 1).uig and
and Beven, 1994: Young, 1993; Youel., 1997; Lees, D€Vven (1994) estimated a value of 0.628 for a catstt

2000; Young, 2001: Vongtanaboon and Chappell, 2004} Mid-Wales in the U.K. and Young (1998) estimated
may best describe the rainfall-riverflow responge. Vvalue of 0.770 for a catchment in the USA. Chapgtedl.

typical first-order transfer function model is givepy (1999) also estimated a value of 0.420 for equaitori
Young (1992, 2005), Young and Beven (1994) andcatchment in East Malaysia. The catchment in thé S

Chappellet al. (1999, 2004b, 2006) as: clearly more sensitive to antecedent moisture ¢
Q= Lut_d (6) Bedford Ouse sub-model (BOSM)
1-0z7* Within the DBM methodology the Bedford Ouse Sub-

whereQ; is the subsurface flow along the dominant flow Model (BOSM) (Young, 2001;

pathway at time step P the production parametef;] ~ Chappellet al., 2004b, 2006) is also used to model the
the recession parametey: effective rainfalld the pure nonlinear component of the rainfall-riverflow prese
p ’ P The general form of the model is given in Chappgeél.

time delay between the effective rainfall and th#ial (2004b, 2006) as:

riverflow response and 27" is the backward shift — Rg (10)
operator. The DRCs which describes the rainfall- @ ° t
riverflow of a catchment are based on the paramdter Where L
andl of Equat.lon 6 and are given by Chappetllal. 6 = @—1+_{R _@—1} (11)
(1999, 2006) as: 7,
- P ) whereU, is the effective rainfall (Imm)R, is the average
1-0 (gross) rainfall (mm);<9t_1 is the unsaturated zone storage
_ Tl ®) variable at the previous time step (mmj, is the

log, () dimensionless nonlinearity term for the whole catent
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response. The nonlinearity ternt ) is obtained by an normally explained by having two parallel water
athways, a fast pathway and a slow pathway (Y@nty

iterative process applied to the BOSM and transfegeven 1994: Young, 1993, 2002). Example of fast
function expressions with the objective function ata pathwz;lys incl,udes infi,ltration-’excess .overland flowan
higher R® and a minimum YIC with@ initially set as | oon and Keesman, 2000) or shallow sub-surface flow
zero. The IHACRES model (Jakemaet al., 1990; (Chappellet al., 1998). Slow pathway includes flow deep
Jakeman and Hornberger, 1993) has also been usked in within rock aquifers (e.g. Sefton and Howarth, 199he
modelling of nonlinear behaviour in the rainfalgiflow  more pathways the model identifies as plausible th
process (e.g. see: Post and Jakeman, 1996; Seftbn aigher the model order. The best of them is comeitle
Howarth, 1998; Young, 2001). This model is an esi@m  hased around the coefficient of determinatiorf)(Ror

of the BOSM approach, which includes temperaturesimplified Nash and Sutcliffe efficiency (1970)teria in

effects. hydrological literature) and the heuristic Young
. . Information Criterion (YIC) (Young and Beven, 1994;
Exponential function sub-model (EFSM) Lees, 2000; Young, 2001; Beven, 2001a) which are

An exponential function sub-model (EFSM) has alserb

. ) defined as follows:
used to quantify nonlinear component of the rainfal

2

riverflow process (see: Young, 2006). The applwatf p2_ g (14)
the EFSM within the DBM methodology of this study i o2
probably, the first of its kind in the tropics. Tigeneral 0 )
form of the model is given b g
il i YIC =In| = | +In(NEVN);

U =R(t-e*) (12) o7
whereU; is the effective rainfall (mm)R, is the average 1 i=m o2p
(gross) rainfall (mm)y, is the observed riverflow (mmy, NEVN = — z UA i (15)
is the exponential parametet# 0). This approach was np ‘= Hiz

successfully used by Young (2006) to model theydail 5 ) ) .
rainfall-flow data from the Leaf River catchmenitiwan ~ Wheredy is the variance in the observed da@; is
estimateds parameter of 0.0124 and efficiency of 86.0%.variance of the model residuals; NEVN is the Noiseal
This 1944 knf catchment is a humid watershed, located inError Variance Norm which is a measure of the misdel
Mississippi, USA. parsimony (i.e. the degree of over-parameterisaticdhe
model); np=n+m+1 is the number of estimated

Normalisation of ‘effective rainfall produced by

nonlinear sub-model parameters in thé vector; 0 P, is an estimate of the

In order to maintain mass balance, the effectivefai  variance of the estimated uncertainty on tti¢h
from the EFSM and BOSM nonlinear rainfall filtersea
normalised in relation to the catchment averagefalli
The normalised effective rainfdlle;is given in Chappell parameter in thé vector.
et al. (1999) as:
ZR The R?is a statistical measure of how well the model
Ug =U, (13)  explains the variance of the data, if it is betweerp and
ZUt unity it is the proportion of output variance expkd by
The nonlinearity term with these models can beth® model: as the model fit improves its value apphes
incorporated into the triad to givel{M, J]° where P is unity, thus when the variance of the residualsois bs

the nonlinear term (i.e. BOSM or EFSM filteN,andM  compared to the variance of the datacif and g are

represent the number of a and b parameters in Bas&  of similar magnitude then it tends towards zero &l

and 3, respectively and is the pure time delay. model fits no better than the mean of the obsedatd.
With particularly bad models (e.g. unstable), reald

The EFSM model utilises past riverflows to derive t variance can be larger than that of the output, deltich

form of the nonlinearity while the BOSM filter reiges  explains negative values ofR

only rainfall. In this study, the EFSM together hvithe

parameter estimate; an&’izis the square of thdth

BOSM are applied. The YIC is a more complex criterion that provides a
o o measure of the balance between model fit and over-
Model order (complexity) identification parameterisation (Lees, 2000). The first term o€ Y$

The model identification may result in a range afdals simply a relative measure of how well the modellaixs

[N, M,0] * giving a good fit to the data. A first-order the data. Thus, when the model residuals get snafie
model has one dominant mode water pathway desgribincloser to zero the term becomes more negative. The
the rainfall-riverflow response. A second-order mlois  second term quantifies the degree of over-
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parameterisation in the model, and tends to bedarger
when the model is over-parameterised and the paeame

of the approach is the ‘heart and soul’ of the DBM
approach.

estimates are poorly defined. Based on the abateriar
the approach helps to identify a model which exigahe  Application of the DBM TF model to the data
data well with a minimum number of parameters whichinitial visual analysis of the rainfall and rivesil data in

are statistically well defined.

DBM rainfall to riverflow modelling steps
The procedure for the building of DBM transfer ftion
rainfall to riverflow model (see: Young and Bevédi994;

the catchments revealed that the 1978 water year (i
from March 1, 1978 to February 28, 1979) was thky on
period where data was available at riverflow statiosed
in the study. The 1978 water year was, therefsedias
the period of analysis for the application of thBND TF

Lees, 2000; Young, 2001) is as follows: model.

1)

2)

3)

4)

5)

6)

7

8)

Identify linear transfer function model for the #m

series data)f, U] using the Simplified Refined The DBM TF model as outlined in above was appl®d t
Instrumental Variable (SRIV) algorithm (Young, riverflows of River Birim at Kade and River PraAdsin
1985, 1991). The SRIV method uses a recursive leaflraso and Twifo Praso within the River Pra Basie(s
square algorithm (Young, 1984) followed by the map: Fig. 1). Average rainfall over the catchmeots
application of the instrumental variable (IV) matho Kade, Assin Praso and Twifo Praso at each time aitep
(Young, 1985) which removes the bias of theday was used as input into the model. The averaging
estimates. process was done by using the Thiessen Polygon
Examine the model fit by visualisation and approach (Mutreja, 1986; Linslegt al., 1988; Shaw,
investigation of goodness of fit usingRIf the  1994). This approach allows area-weighted integmagif
model fit is satisfactory the analysis is completerain gauge totals from gauges within and adjacerihé¢
proceed to step 8. Otherwise, proceed to step 3. catchment to be used as input into the model.

Based on the analysis in steps 1 and 2 plus

knowledge of the physical/hydrological system selecUsing the SRIV identification algorithm and YIC afmf

the simplest transfer function model which appearsas model order identification criteria a range iofeér
capable of characterising the behaviour of the wutp transfer function models relating the input (averag
variable (riverflow) in relation to the observecput  rainfall) and the output (riverflow) were obtainéat the
(rainfall). above named riverflow stations. Due to catchment
Obtain initial estimate of time variable parametershydrological systems being inherently nonlineartjnae
(TVPs) in a transfer function model by usingefix varying parameter (TVP) model was applied to
interval smoothing estimation (FIS) (Young, 1984;investigate the form of the nonlinear behaviouthie data
Young 1986; Young, 1998). (e.g. see: Young and Beven, 1994: Chapgedl., 1999;
Investigate state dependent parameter (SDP) netatio Lees, 2000). The TVP model was estimated where the
(e.g. gain versus riverflow) using scatter plotsproduction parameteP( see Equation 6) was allowed to
(Young and Beven, 1994; Young, 2001; 2003; 2006).vary whilst the recession parametéd ( see Equation 6)

If a single relationship emerges, repeat the TVRyas kept constant, followed by State Dependent
estimation with the data processed in order of thearameter (SDP) modelling with the flow representire
ranked dependent state to improve the SDP relation. gependent state. The SDP analysis quantifies aate st
In case of the presence of gain nonlinearitieSgependency in the parameter variations which is
reformulate the model as an input nonlinearityassociated with nonlinear behaviour in the catchmen

estimate the parameters using the SRIV method qf001, 2006).

system identification.

Investigate the physical interpretation of theetént To show the relationship between the production
resultant models and select the one that explaimed parameter and the flow, the sorted state (i.e.rftoxe)
data well and has a sensible mechanisticand the sorted SDP estimates (from the SDP furjction
(hydrological) interpretation of the data. This @sp were plotted. Exponential relationship between tiveas

Table 2.Purely linear model identification of flows of RivBirim at Kade, River Pra at Assin Praso and TviRfaso
in the River Pra basin.

Station River Model YIC R (%)
Kade Birim [111] -6.082 62.45
Assin Praso Pra [111] -5.151 50.36
Twifo Praso Pra [112] 5.371 58.41
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investigated using an optimisation routine fittexd the
sorted SDP parameters (i.e. non-parametric estjmate
Following that a separate optimisation routine wtzn
used to estimate the exponential paramgtéEquation
12) for the data (i.e. parametric estimate).

The routine utilises the SRIV algorithm within aerative
procedure to optimise the exponential parametelevthe
SRIV model residual variance was minimised. The
exponential parameter was then used to transfoen th
catchment average rainfall, into catchment-average
‘effective rainfall’ using the EFSM (see: Equatid)
equation. To ensure mass balance, the catchmeragave
‘effective rainfall’ was normalised in relation tthe
catchment-average rainfall using Equation 13. After
normalisation, the SRIV algorithm was used again to
identify a range of transfer function models relgtithe
‘normalised catchment-average effective rainfalb t
riverflow with their respective parameters. UsintYand

RZ the model which explained the data well with good
physical meaning of the estimated parameters wa
selected for each riverflow station.

RESULTS AND DISCUSSION

Purely linear TF modelling

The efficiencies (B) of purely linear transfer function
modelling of the data at all the riverflow stations
considered within the River Pra basin ranges betwee
50.36% and 62.45% (Table 2). These efficienciedaave
possibly due to the presence of nonlinearities r@salt of
variable antecedent moisture conditions (FAO, 1981
Young and Beven, 1994; Chappetlbl., 2004a).

The model structures of all the catchments aré-dirder

(see: Table 2). These structures only give prekmin
indication of the likely model orders and time dsla
because the linear models only have low efficiencie

TVP and SDP TF modelling

Investigation of the presence of nonlinearitiesgstVP
and SDP modelling as explained in above resulteanin
SDP fit of the observed riverflows, which descritibe
rainfall-riverflow response with efficiency @ ranging
from 98.11 to 98.78% for all the catchments. These
indicate that the SDP model captured almost althef
nonlinearities in the rainfall-riverflow behaviowvithin

the catchments. This suggests that the plot ofSb@

SDP estimates of gain parameter

SDP Estimates of gain parameter

SDP Estimates of gain parameter

x 10° Non-parametric rainfall-flow non-linearity of River Birim at Kade

. . . .
1.5 2 2.5 3
Flow (mm)

a) Kade

I
3.5

4.5

x 10°  Non-parametric rainfall-flow non-linearity of River Pra at Assin Praso

x10°

.
1.5 2
Flow (mm)

b) Assin Praso

2.5

3.5

10

-5

Non-parametric rainfall-flow non-linearity of River Pra at Twifo Praso

I
0.5

. .
15 2
Flow (mm)

¢) Twifo Praso

I
25

3.5

parameter estimates would give the full nature lf t Fig. 3. Non-parametric estimate of the rainfall wilo
nonlinear behaviour of the catchments. The plotshef —nonlinearity in gain parameter (see ‘P’ in Equatfras a
SDP parameter estimates (namely gainfoirt Equation ~ function of flow (blue dots) and uncertainty (bldashed
6) against the riverflows are shown in figure 3eThots lines). @) River Birim at Kade b) River Pra at AsBiraso
show that the gain parameter increases with intrgas and c) River Pra at Twifo Praso fitted with expotmegn
flow, which suggests that nonlinearities are pregethe  curve (solid red line).

translation of rainfall to riverflow in the catchmis.



Canadian Journal of Pure and Applied Sciences 2413

The plot of River Birim at Kade (Fig. 3a), RiveraPat
Assin Praso (Fig. 3b) and Twifo Praso (Fig. 3c)gmasy 0.084
that the nonlinear behaviour of the riverflows vrittthe 0.0821
River Pra Basin follow an exponential relationship '
. . [}
between the gain parameter and the riverflow. Fthen S gl
plots it could be seen that as the catchment wetthe 8
instantaneous runoff coefficient (i.e. proportidrrainfall S 0.078¢
generating riverflow) keeps increasing but geta faoint =
where it does not change. This means that as tr-3 0.076]
catchment wets up, the runoff coefficient increasesil 2
it reaches a point where the runoff coefficient agm = 0.074r
constant, effectively giving a linear relationsliptween 00721
rainfall and riverflow. '
0.07 : : : : : :
The estimated exponential function from the SDP 03 -025 02 015 -01 -005 O
modelling for the flows of River Birim at Kade aRiver Exponential parameter
Pra at Assin Praso and Twifo Praso are given as: a) Kade (EFSM)
0.042
boKD, = 0006(1 - e %122 ) (16)
0.041f
boAS = 0.007¢1 - e 5% ) an
Q
boTW, = 0.00761 - & 4™ ) 1) 5§ %
where boKD, boAS and boTW are the gain parameter $ 0039
estimates angKD, yAS, andyTW are the riverflows of ©
River Birim at Kade, River Pra at Assin Praso andfd _-5
Praso, respectively. Structurally, the exponetitiattion g 0.038
is limited to be non-negative and this is a seesdallution
in this case — also well contained within the uteiaty 0.037}
bounds of the SDP estimates.
0.036 ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5

Nonlinear TF modelling
Final optimisation of the exponential parametgr
(Equation 12) for the catchments, using iterativetines

Exponential parameter
b) Assin Praso (EFSM)

are shown in figure 4. The optimised valuesBadre for 0.026
the estimation of ‘effective rainfall and subsegtie 00255
modelling of nonlinear behaviour within the catchmse
The plots suggest that, riverflow simulation is Hiig o 0.025¢
sensitive tq values. e

8 0.0245)
First-order modelling (Single water pathway) g 0.024}
The estimates of the exponential parameter for th'c_g
catchments, model efficiencies and the resultan S 0.0235¢
optimised first-order nonlinear transfer functioroael 4
parameters and statistics optimised against YICR{hds 0.023¢
the objective functions are presented in table Be T 0.02251
model parameters and statistics estimated for a
optimised first-order transfer function model usitige 0.0220 0‘1 0‘2 0‘3 0‘4 05

BOSM nonlinear filter are shown in table 4. Exponential parameter

¢) Twifo Praso (EFSM)
Fig. 4. Final optimisation of the exponential paesen of
the EFSM (seef’ in Equation 12) for the catchments for
the estimation of effective rainfall and modelliraf
honlinear behaviour (see: Fig. 1 for the locatidntte
gauging stations).

From table 3, the first-order EFSM model provides a
excellent fit for riverflows of River Birim at KadeRiver
Pra at Assin Praso and Twifo Praso with efficiendi®?)

of 88.26, 89.55 and 92.94%, respectively. The BOS
model (Table 4) gives efficiencies of 72.53, 69atid
77.94%, respectively, for the same stations irbtmn.
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Table 3. First-order nonlinear DBM model parametdestified for the catchments within the River Pasin for the
1978 water year using EFSM as the nonlinearitgrfilt

Parameters and statistics Catchments within therFva Basin
Kade Assin Praso Twifo Praso
Area (knf) 2126.67 9347.31 20778.0
R (%) 88.26 89.55 92.95
Model order [110] [110] [110]
YIC -8.740 -9.021 -9.738
B -0.1409 0.2226 0.2037
0 -0.8947 -0.8860 -0.8868
s(0) 0.0043 0.0042 0.0035
P 0.0195 0.0132 0.0111
o(P) 0.0007 0.0004 0.0003
TC (days) 8.9868 8.2618 8.3234
o(TC) 0.3822 0.3275 0.2780
SSG 0.1853 0.1158 0.09828
o(SSG) 0.0030 0.0019 0.0013

Note: R% Simplified Nash and Sutcliffe efficiency for mdfd#lodel order: [No. of denominators, numeratorsteptime delays];
YIC: Young Information Criterionf: exponential parametdr] : recession parameter; P: production parametertifi@ constant;

SSG: steady state gain of the transfer functigh;] ), o(P), 5(TC) ands(SSG): standard deviation of parameter in the pesis.
See Equation 12 (EFSM).

Table 4.First-order nonlinear DBM model parameters ideetiffor the catchments within the River Pra basingus
BOSM as nonlinearity filter to model rainfall toverflow for 1978 water year.

Parameters and statistics Catchments within therAva Basin

Kade Assin Praso Twifo Praso
Area (knf) 2126.67 9347.31 20778.0
R (%) 72.53 69.71 77.94
Model order [111] [111] [111]
YIC -6.873 -6.315 -6.918
Ty 55 50 30
0 -0.9221 -0.9145 -0.9051
o(0) 0.0051 0.0069 0.0066
P 0.0171 0.0123 0.0114
o(P) 0.0010 0.0009 0.0008
TC (days) 12.3271 11.191 10.0316
o(TC) 0.8563 0.9827 0.7566
SSG 0.2197 0.1434 0.1201
o(SSG) 0.0052 0.0040 0.0027

Note: 7, : BOSM nonlinearity term. See Equation 11 (BOSM).

The EFSM is expected to perform better than the IBROS Generally, the performance of the models, in teohs
model, because in the evaluation of the nonlineaexplanation of the model output variance is excelfer
behaviour of the catchments the EFSM model useall the models (Table 3 and 4) but the model faves that
riverflow as a surrogate of sub-surface moisturdika  peak flows during the major rainfall season (i.eayMo
BOSM whicha priori fixes the form of the non-linearity. June) were underestimated by the BOSM model (Big. 6
Figure 5 and 6 shows the ability of the DBM modwl t However, the BOSM model predicted the recessiondlo
capture the key dynamics inherent in the relatignsh very well as compared to the EFSM model at all the
between the incoming rainfall and the outgoing nfieev stations. (Figs. 6a, b and c). Thus, within theeRiPra
within the catchments, using EFSM and BOSM modsls abasin the BOSM and EFSM sub-models are
nonlinear filters, respectively. recommended for low and high flow studies, respebti
based on their performance (Figs. 5 and 6).
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Fig. 5. Daily flows predicted by optimum first-orde
nonlinear transfer function EFSM model (green) agai
observed flows (blue) showing the DBM model’'s aili
to capture the dynamics of the rainfall to rivevflo
generating mechanism in the catchments within tiverR
Pra basin (i.e. from March 1, 1978 to February 28/9)
(See: Table 3 for the models).
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Fig. 6. Daily flows predicted by optimum first-orde
nonlinear transfer function BOSM model (green) aghi
observed flows (blue) showing the DBM model’s dbili

to capture the dynamics of the rainfall to rivewilo
generating mechanism in the catchments within tiverR
Pra basin for the 1978 water year (i.e. from 1lstrd¥ia
1978 to 28th February, 1979). (See: Table 4 for the
models).
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Higher-order modelling (multiple water pathways) 4 ‘ ; :
The presence of multiple runoff pathways in the —— Blue-gauged
catchments was also investigated using YIC af@®the 3.57 —— Green-model |
objective functions in higher-order modelling (up t
fourth order). The results are shown in table 5 @rfdr
the EFSM and BOSM models, respectively. From the’g 2.5¢
tables, comparison of the?Rind YIC of the higher-order £
models to those of the first-order models in theima
show reduced R values and higher YIC values of the
higher-order models. For instance, at Kad@,aRd YIC
of the first-order model reduced from 88.26% and48 1
to 84.51% and -7.869, at Assin Praso from 89.55%0-an
9.021 to 88.45% and -7.302 and at Twifo Praso from
92.94% and -9.738 to 89.27% and -7.41, respectivety 0
the higher-order models. Similarly, the BOSM alkows
reduction in £ and less negative YIC values at all the
stations (Table 6). Thus, comparison of the mode
efficiencies and YICs of the first-order modelgthose of
the higher-order models indicate that higher-ordedels ~ Fig. 7. Daily flows predicted by optimum second erd
could not be justified for the catchments desphe t nonlinear transfer function model (green) against
improvement in the fit of mid and late recessiofig (7). observed flows (blue) showing the DBM model’s apili

Thus, a single pathway dominates the catchment® capture the dynamics of the rainfall riverflow
behaviour in routing rainfall to riverflow in theabin. generating mechanism in the catchments within tiverR

Pra basin for the 1978 water year (i.e. from Mdcth978
to February 28, 1979) (see: Table 5 for the models)

200 300 400
Day

0 100

F) Twifo Praso (EFSM)

— Blue-gauged
5t — Green-model

Final first-order models identified for the catchments
Based on the EFSM parameterisation of the nonlityear
(see: Table 3), mathematical relationships between

Q rainfall input and riverflow output with no initigbure
3 time delay were identified for the catchments Kede,
= 3 ’ Assin Praso and Twifo Praso. These are as follows:
E 2l i Kade: Q :ﬂUQKDt (19)
1-0.8947z7"
; 0.0132
I i Assin Praso: = 77777 UeA (20)
' Q=1 086 D
0 ‘ ‘ ‘ : : : Twifo Praso:  Q - 00l gy (21)
0 50 100 150 200 250 300 350 400 ' 1-0886¢z7t !
Day . .
a) Kade (EFSM) where UeKD, UeAS an.d UeTW, are ‘normalised
4 ‘ ‘ catchment effective rainfall’ inputs for Kade, Ass$traso,
35l — Blue-gauged | | and Twifo Praso, respectively argl” is the backward
' — Green-model shift operator. The no pure time delay for the fow
3r 8 suggests that rainfall is more rapidly seen asfiive in
the basin.
T 25} 1
£ 2 | Table 7 shows the performance of the DBM models
g compared with conceptual and physics-based models
i 15¢ 8 which have been applied in Ghana and the neighiguri
countries. The Table shows that the performancthef
b i simple first-order DBM TF models which require only
05 i four parameters, namely exponential paramet@), (
0 ‘ ! : recession parametet]), production parameter (P), pure
0 100 200 300 400 time delay @) gives efficiencies for similar African

_ Day catchments (of a range of sizes) which are no smtdhn
b) Assin Praso (EFSM) those of complex conceptual or physics-based models
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Table 5. Comparison of YIC and?Rf identified first-order and high-order nonlinemodels using EFSM as the
nonlinearity filter for the flows within the Rivé?ra Basin.

Station First-order model Higher-order model

RZ (%) YIC model order] R (%) YIC model order]
Kade 88.26 -8.740 [110] 84.51 -7.869 [222]
Assin Praso 89.55 -9.021 [110] 88.45 -7.302 [221]
Twifo Praso 92.94 -9.738 [110] 89.27 -7.41 [222]

Table 6. Comparison of YIC and?Rf identified first-order and high-order nonlineaodels using BOSM as the

nonlinearity filter for all the gauging stations.

First-order model Higher-order model
Station RZ (%) YIC model order| R (%) YIC model order,
Kade 72.53 -6.875 [111] 70.99 -5.956 [312]
Assin Praso 69.71 -6.349 [111] 61.65 -5.423 [310]
Twifo Praso 78.44 -6.928 [112] 76.83 -6.135 [310]

Other studies which demonstrates that the DBM TFRdays. The above indicates that the derived SSGS @sd
rainfall-riverflow  modelling technique performed from the DBM TF parameter estimates follow normal
efficiently with smaller number of parameters aratad distribution and are not hlghly uncertain.

inputs can be found in Young and Beven (1994), YYoun 350
et al. (1997), Chappelt al. (1999, 2004a, 2004b, 2006),
Lees (2000), Young (1992, 1993, 1998, 2001, 2002,  3%0|
2005), Mwakalilaet al. (2001), Vongtanaboon (2004), 250+
Vongtanaboon and Chappell (2004), Romanovécal.
(2006), among others.

=N
au o
o O

Frequency

Results: Uncertainty analysis of derived parameters
Time Constant (TC) and Steady State Gain (SSG)

=
o
o

a
o

In order to compare DRCs between the catchments (or
with published data) the uncertainty in the estedat
DRCs must first be investigated. The uncertaintyttos

DBM TF model parameters (i.e. recession parameter;
and production parameterP) was determined by
assuming that the residuals follow a normal distitin 350
(Young, 2003). It was necessary to quantify the 300-
uncertainty in the TC and SSG using Monte Carlo
Simulation (MCS: see Young, 1998, 2001, 2003)
analysis. MCS analysis is the simulation of a medstre

the model is run several times (in this study wi€h000

realisations) using different sets of parametesrgTC

and SSG) which were selected randomly from the trode
predicted standard error about the gain or prodocti 100}

parameterf) and the recession parametét ).
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a) SSG for River Pra at Twifo Praso
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Figure 8 shows the results of the analysis usin@Q® 0 ’
random realisations for River Pra at Twifo Prasbe T 7 7.5 8 8.5 9 9.5 10

distribution of the TC and SSG of the models fa tither Time constant (TC)

stations in the basin (not presented) were sirtilahat of b) TC for River Pra at Twifo Praso

Twifo Praso. The Figure suggests that the SSGsTa@wd  Fig. 8. Histogram of Monte Carlo analysis to eveduthe
are symmetric about their means and so comparaitie w uncertainty associated with the derived paramestesidy
the mean value derived earlier. For instance, feelRPra  state gain (see Equation 7) and time constant (dm®es
at Twifo Praso mean SSG is 0.0983, estimated SSG Equation 8) of the TF DBM model of River Pra at Tavi
0.0983, mean TC = 8.3501 days, estimated TC = 8.323Praso showing well defined distribution about theams.
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Table 7. Model efficiency (R: see Table 3) of identified DBM models comparethwiiat of conceptual and physics-
based models which have been applied to catchnrei@ana and neighbouring countries i.e. Ivory €oBarkina
Faso and Benin based on model estimation.

Model Type | Catchment River Area (Rn Country K (%) | Reference

GR2M CCM | Samien Sasandra  29,300.0 Ivory Coast 89 Paturelet al.(2003)
WBM CCM Samien Sasandra  29,300.( Ivory Coast 46.0aturBlet al. (2003)
GR2M CCM Bada Bandamg 24,075.( Ivory Coast 81.0 urekdt al. (2003)
WBM CCM Bada Bandama| 24,075.0 Ivory Coast 69,0 feh&tial. (2003)
GR2M CCM Samandeni Moohoun 4,575.( Burkina Faso4.0 8| Paturekt al. (2003)
WBM CCM Samandeni Moohoun 4,575.0 Burkina Faso .068 Paturekt al. (2003)
SAMULAT-H | PBM Upper Aguima| Queme 3.2 Benin 82|0 Qairal. (2006)
SAMULAT-H | PBM Upper Niao Queme 3.1 Benin 67.0| Geirgtal. (2006)
ACRU CCM Manhia Densu 2100.0 Ghana 82/0 Beko8%p0
EFSM DBM | Kade Birim 2126.67| Ghana 88.83  This study

EFSM DBM | Assin Praso Pra 9347.31  Ghana 89.6  Jiody

EFSM DBM | Twifo Praso Pra 20778.0 Ghana 93|0 Thidy

CCM: Conceptual model, PBM: Physics based disteithuhodel, DBM: Data-based mechanistic, EFSM: Exptakfunction sub-model.

Results: Hydrological interpretation of estimated One would have expected that, the large catchnie e
model parameters River Pra basin with long rivers would have hadj@ure
Within the DBM methodology, hydrological/physical time delays if rainfall fell only in the headwatefBhus,
interpretation of the identified parameters asdediavith  perhaps the catchments have similar rainfall in the
the model is very important and cannot be overdownstream areas. The small catchment of River dabo
emphasised (Young, 2005). DBM models using then the North of the same country (see: Fig. 1 fmation)
EFSM sub-model produced the most statistically dounhas a delay of a day (see: Table 8) possibly duhéo
models, and so it is these models that are intigre relative dryness of the catchment (Acheampong, 1988
physically/hydrologically. The parameters in the TFKranjac-Berisavljevic, 1999; FAO, 2005; Ahenkoreh
equations (Equations 19 - 21) to be considered arel., 1994) or disconnected deep groundwater storage

exponential parameter:p, recession parametéd, (Bates, 1962b).

production parameter®, pure time delayd, and the
associated dynamic response characteristics (DRES)
the steady state gain: SSG, and time constant: TC.

This study and the above observations suggest that,
perhaps, pure time delay may not solely depend on
catchment size.

Pure time delay (6 )

The pure time delay is defined as the response time EXponential parameter ()

rainfall to be first seen as riverflow. The valuer fa  The exponential paramet@restimated for the catchments

catchment is large if a) the rainfall is disconeecfrom in the River Pra basin are River Birim at Kade14D9
the water table, i.e. it includes large unsaturatede and River Pra at Assin Praso: 0.2226, and Twifs®ra
storage or b) rainfall is located only in its heatey sub- 0.2037 (Fig. 4). A value of 0.0124 was obtained thoe
catchments. No pure time de|ay was identifiedaflbthe Leaf River catchment located in CO”inS, MISS|S$|pp

catchments (Table 3). This means rainfall is rapg#ien the USA by Young (2006). Hydrological interpretatiof
as riverflow. this parameter is that the higher tpevalue, the more

quickly the runoff coefficient increases with inasing

In Thailand, a humid tropical region like Ghanathii ~ storage, and the greater the resistance to anteicede
the X113, P47 and P14 catchments which are of @, Mmoisture conditions.

521 and 3853 kM respectively, Vongtanaboon (2004)

estimated no pure time delay (Table 8). Similaiythe ~ Time constant (TC)

0.133 knf C1 Bukit Berembum catchment in Malaysia, Time constant (TC) is a measure of the ‘resideimoe’t
Chappellet al. (2004a) estimated zero pure time delay.0f rainfall in the catchments (Young, 2003, 2005;
Again in Malaysia, Chappelet al. (2006) obtained a Chappellet al., 2006), calculated by using Equation 8. TC
value of 15 minuteS, for the 0.44 %rBaru catchment. for the catchments within the River Pra basin iseRi
The data series were in 5 minutes time-step imglime ~ Birim at Kade, approximately: 9.0 days [7.78 — 0.7
delay of 3. Examples, of estimates of pure timegelf — days] and River Pra at Assin Praso: 8.26 days [£.275
catchments in temperate conditions can be seeia 8.  days] and Twifo Praso: 8.32 days [7.42 — 9.55 dayt]
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Table 8. Comparison of time constants of first-order DBM ralsdof catchments in different climatic regionskeah

by size
Catchment | Area (kf Climate Geology TFM NLF Time Reference
regime constar
Plot 0.000015 Temperate Acid soil [L1p] SSSM IniButeg Fawcettet al. (1997)
Cl 0.13:¢ Humid tropical Saprolite [L10)]| SSSWw 23 day: | Chappellet al. (2004a
Baru 0.44 Humid tropical Mudstone [118] BOSM 3ihates | Chappebt al. (2006)
Coalburr 1.5C Temperat Mudstont [110] | BOSM 8.6 hour | Chappellet al. (2006
Bottoms 10.60 Temperate Limestone [L11]1]] BOSM Hhars | Chappelt al. (2006)
X113 129 Humid tropical Sedimentary [L1p] SSSM 3@ays | Vongtaboon (2004)
P47 521 Humid tropica Metamorphi [L10]| SSSM 6.14 day | Vongtaboon (200-
P14 3853 Humid tropical Granite/Metamorphiil 1 0] | SSSM 7.28 days| Vongtaboon (2004
Nabogo 1950.00 Tropical Voltain [111] SSSM 10.13 days Ampadu (2007)
continente
Kade 2126.67 Humid tropical Birimian [110] EFSM .98days | This study
Koumangou 6070.00 Tropical Voltain [121] SSSM 12.10 days Amisigo (2005)
continental
Assin Praso 9347.31 Humid tropical Birimian [11|0] EFSM 8.26 days| This study
Twifo Prasc | 20778.00 | Humid tropica | Birimian/Tarkwair | [110] | EFSNM 8.32 day | This stud
Porga 27197.00 Tropical Voltain [L20]| SSs™m 8.21dayd Amisigo (2005)
continental

Note: TFM: Transfer function model structure; NLF: Nanelar filter; SSSM: Store surrogate sub-model Equa®; BOSM: Bedford Ouse sub-
model Equation 10 and 11; EFSM: Exponential fumciab-model Equation 12. [No. of denominators, mataees, pure time delays].

the uncertainty on the estimated values given i@ th(Dickson and Benneh, The
brackets. These indicate that within the Rivertbasin all
the catchments (ranging in size from 2126 to 208
have similar residence time for rainfall to appes

riverflow.

1988; Bates, 1962a).
catchments also have similar topography, whichtctes
through a sequence of gently rolling hills with gead
elevation of between 250m and 300 m above sea level
(Dickson and Benneh, 1988).

Within the Malaysian rainforest (i.e. in similarimbhtic = The time constant of River Nabogo located in the
conditions), using the same DBM methodology (Chéppe northern part of the same country estimated by Atapa
et al., 20044, 2006), entirely different time constam&se  (2007) using daily time series of rainfall and rilew
obtained for the 0.44 kKiBaru and the 0.133 KnBukit  and that of the catchments estimated by Amisig®%20
Berembun C1 catchment (see: Table 8). Chapgedl. compared with that of the catchments in the Rivex P
(2006) attributed the vast difference in the tinomstant basin (Table 8) indicates that they are similareisidence

to the different geological formation underlyingcka time. The climate, vegetation and geological foiorat
catchment. In Northern Thailand, in the P14 and P4Tnderlying these catchments are different resultimg
catchments, located in the same climatic conditionglifferent types of soil cover through weatheringeTsoil
(Boochabun et al., 2004; Vongtanaboon, 2004) and cover in the River Pra basin is predominantly Aalds
underlain by similar geology (Table 8), Vongtanatoo (locally called ‘Forest Ochrosol’) which is deeply
(2004) estimated similar time constants for theseveathered and well drained (Brammer, 1962; Ahenkora
catchments using the same DBM approach (Table 8). et al., 1994; Attah-Quayson, 1999). It is possible rainf
within the catchments percolates much deeper inth a
through the soil before it ends up as riverflow.epe
movement of water in regolith beneath Acrisol oarte
and its impacts on rainfall-riverflow processes énéeen
observed by Chappedt al. (2007), in catchments within
the South East Asia.

The similar time constants identified for the caemts in
the River Pra basin are possible, because the matuls
lie within the same climatic condition (i.e. wetnse
equatorial) and vegetational zone (i.e. forest yaared
have soil cover which is predominantly Acrisolse(i.
Forest Ochrosol). The whole basin is also printypal
underlain by the same geological formation (i.ee th The Nabogo, Koumangou and Porga catchment which are
Birimian formation) with a small section in the rdld of located in the northern part of the country areeutain

the basin underlain by the Tarkwain formation (Bate by the Voltain formation which consists of sandston
1962a; Dickson and Benneh, 1988; Atta-Qauyson, 1999shale, mudstones, and limestone (Bates, 1962agBgat
The Birimian formation consists of mainly graniteid 1966; Dickson and Benneh, 1988). The soil cover is
(Ahenkorahet al., 1994) whilst the Tarkwain formation predominantly Plinthosol (locally called ‘Groundwat
consists of sandstones, schists, quartzite, andlitpy Laterites’) which is poorly drained and shallow
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Table 9.Comparison of steady state gain (SSG) and riverfloefficient (RC) of the catchments in the Rivea Basin
for the 1978 water year (i.e. from March 1, 197&é&bruary 28, 1979)

Area AR AF RC=AF/AR SSG
Catchment >
(km?) (mm) (mm)
Kade 2126.67 1187.40 263.97 0.2223 0.1853
Assin Praso 9347.30 1236.30 164.32 0.1329 0.1158
Twifo Praso 20778.00 1425.20 157.70 0.1107 0.0983

AR: Annual catchment average rainfall, AF: Annuaérflow leaving the catchment.

Table 10. Comparison of observed @grTand DBM estimate (EJ) of evapo-transpiration losses and possible
catchment leakages of the catchments in the RivarbBsin for the 1978 water year (i.e. from MarchQ78 to
February 28, 1979).

AR AF SSG ETo=AR-AF ETy= (1-SSG)xAR
Catchment
(mm) (mm) (mm) (mm)
Kade 1187.4 263.97 0.1853 923.43 967.37
Assin Praso 1236.3 164.32 0.1158 1071.98 1093.14
Twifo Praso 1425.2 157.70 0.0983 1267.50 1285.10

AR: Annual catchment average rainfall, AF: Annuigerflow leaving the catchment, SSG: DBM model mstie of steady state
gain.

(Brammer, 1962; Attah-Quayson, 1999). One wouldehav that 80% of the rainfall has been lost through evagon
therefore, expected that the shallow and poorlyndch  and transpiration with the remaining 20% appeardsg
catchment in the North would be flashier (i.e. $&or riverflow.
residence time) than the catchments in the fomest but
this is not the case. The catchments in the Noodsd The SSGs obtained for the catchments in the Rivar P
have a rock aquifer beneath (Bate, 1962b) incrgatsia ~ Basin (Table 9) are Kade: 0.1853; Assin Praso: 3811
time constant to about 10 days. Declining groundwat and Twifo Praso: 0.0983 for the 1978 water yéas.
levels attributed to the numerous (3000) abstractiofrom 1st March, 1978 to 28th February, 1979). These
boreholes drilled in the North have been reportgd bestimates are comparable to those estimated itndpies,
Gyau-Boakye and Tumbulto (2000) and FAO (2005)by Vongtaboon (2004), for the 3853 kiR14, 521 krh
Over time, this might lead to a longer time constan P47 and 129 kX113 catchments which are 0.2447,
0.1211 and 0.1998, respectively. These indicate, as
The observations in Malaysia and Thailand coupléth w expected, that there are high losses within all the
the results in the River Pra Basin and the stuflies catchments which is typical of tropical conditiotge to
other climatic regions which are shown in Table 8,high rates of evaporation. For example, from tatle
suggest that time constant may be highly influenibgd SSG of 0.1853 of River Birim at Kade indicates théth
the nature of the geological formation and regolithaverage annual rainfall of 1187.4 mm, during th&8L9
underlying a catchment. Time constant may be used twater year, about 81.47% which is 967.37 mm is lost
predict the type of geological formation and retjoli through evaporation and transpiration leaving only
underlying a catchment, especially in catchmentsted 18.53% (i.e. 220 mm), to appear as riverflow.
in similar climatic conditions with similar topogray and
soil cover. The annual evapo-transpiration rates in the faest of
Ivory Coast for the Tai Il and Banco Il catchmeate
1363mm/year and 1195mm/year respectively, anddhat
the Guma catchment, in Sierra Leone is 1146 mm/year
all in West Africa (Bruijnzeel, 1990). In the fotemone of
East Africa Bruijnzeel (1990) reports of similarapo-
transpiration rates of 1337mm/yr for Kericho catetmn
(SSG > 1) in the system (catchment) (Young, 200B)s in Kenya and 1381mm/yr for Mbeya catchment in
DRC is analogous to runoff coefficient (RC) whicha Tanzania and in South East Asia, 1170mm/yr for the
measure of how much of the gross total rainfallr (fo Ciwidey catchment in Indonesia. These values are
example in a water year) appears as riverflow aftecomparable to the observed and DBM estimates fer th
evaporation and transpiration losses. For instaR€of catchments in the forest zone of Ghana. This inega
say 0.2 of a catchment over one year or more itelica

Steady state gain (SSG)

The steady state gain (SSG) calculated by usingititqu
7, demonstrates the relationship between the béguitn
input (rainfall) and output (riverflow) of the DBMF
model and indicates physical losses (i.e. SSG &r fain
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that the estimates are reasonable and probabie dre
no leakages in the catchments.

In Ghana, according to Bates (1962b) generallyy onl 4.

about 1 to 10 per cent of rainfall ends up as figerin
the rivers. This observation was based on few stsea
which were gauged around that time. However, thiiDB
model estimate of 18.53, 11.58 and 9.83% of thefahi
to appear as riverflow for Kade, Assin Praso amdfd

Praso catchments, respectively, are in agreemehtthe 5.

observation by Bates (1962b).

Table 9 reveals that, there is no significant défee
between the catchments RCs (i.e. actual water balan
term) and their SSGs (i.e. model water balance)tefime
slight difference between them might be due to rioge
error. This suggests that the SSGs from the DBM TF
model could be used as a sufficient representadion

catchments actual water balance. However, recenth.

Chappellet al. (2006) have introduced a procedure where
the effective rainfall is normalised to give SS@ #ame
as the RC.

CONCLUSION

The DBM transfer function rainfall and riverflow

geologies underlain them (Bates, 1962a; Boateng,
1966; Dickson and Benneh, 1988).

Comparison of the estimated SSG (i.e. the model
water balance) with the RC (i.e. catchments actual
water balance term) showed no significance
difference between the two parameters thus, SSG
could be used as a sufficient representation of the
catchment water balance.

The analyses of the estimated TCs coupled with
estimates from other climatic regions indicate that
riverflow generation processes within a catchment i
highly influenced by the geological formation
underlying the catchment and that with a known time
constant it may be possible to predict the natdre o
the geology underlain a catchment if the catchrigent
located within the same climatic conditions with
similar vegetation, soil cover and topography.

The DBM modelling has led to development of
mathematical relationships between rainfall and
riverflow which could be used in simulating flows i
the basin. The approach is recommended for the
forecasting of riverflow in the country which would
greatly improve the government’s planning of water
supply provision in the country.

modelling approach is very robust (Young, 1998,1200 REFERENCES

Lees, 2000) and has been used effectively to model
rainfall and riverflow behaviour of large catchmei the

Acheampong, PK (988. Water Balance Analysis for

forest zone of southern Ghana. The approach wdedpp Ghana. Geography. 125-131.

to catchments of size between 2126.67- 207 78kmd the
following conclusions can be drawn:

1. The DBM TF modelling process through SDP .
analysis has revealed the nature of nonlinea
behaviour for the riverflow generation processhia t

forest zone of Ghana. Thus, exponential distributio Ahenkorah, Y., Amatekpor, JK., Dowuona, GNN.

Adiku,
Dowuona, GNN. 1997. An analysis of the within-seas
rainfall characteristics and simulation of the ga@infall

SGK., Dayananda, PWA., Rose, CW. and

in two savannah zones in Ghana. Agricultural ande$to
eteorology. 86:51-62.

and

which implies that within the forest zone, as theYentumi, SD. 1994. Soil and water resources ofr@aha

catchment wets up the instantaneous

runoftheir conservation, management and constraintdieo t

coefficient (i.e. proportion of rainfall generating utilization for sustainable development. United ibias

riverflow) increases up to a point and remain canist
where riverflow generation becomes a
relationship between rainfall.

2. The estimated parameters exponential paramg}er (

recession parametet ), production parameter (P),
pure time delay @) and the associated dynamic

University/Institute of Natural Resources for A#fiic
linearpp131.

Amisigo, BA. 2005. Modelling riverflow in the Volta
Basin of West Africa: A data driven framework.

Ampadu, B. 2007. Simulating Rainfall and Riverflow

response characteristics (DRC) of time constan (TCDynam|cs in Ghana. PhD Thesis, Lancaster University
and steady state gain (SSG) suggest that riverflow’ K-
generation within the catchments were not flashy an Attah-Quayson, J. 1999. Macmillan atlas for Ghadl& (
that their response is dominated by single wategdi.). Unimax Publishers Ltd, UK.
pathway.

3. Analysis of the time constants suggests that th&@P6%-

riverflow behaviour within the catchments is simila Bates, DA. 1962 Geology. In: Agricultural and land use

with all of the catchments having high storagesin Ghana. Ed. Willis, JB. Oxford University Preds.
averaging about 8.5 days. The similar storagesimwith 51-61.

the catchments have been linked to the similar



2422 Ampaduet al.

Bates, DA. 1962 Rural water supplies. In: Agricultural Dickson, KB. and Benneh, G. 1988. A New geography o
and land use in Ghana. Ed. Willis, JB. Oxford Umbity =~ Ghana, Longman, UK. pp170.

Press, UK. 62-76. FAO. 1981. Arid zone hydrology, FAO Irrigation and
Beven, KJ. 2001. Rainfall-runoff modelling. The rRer,  drainage paper. 37. pp96.

Wiley, Chichester, UK. pp360. FAO. 2005. Irrigation in Africa in figures-Aquastat
Boateng, EA. 1961. A Geography of Ghand(&di.). survey (Country profile-Ghana). FAO Water repo@s,
Cambridge University Press, UK. pp212. pp89.

Boochabun, K., Tych, W., Chappell, NA., Carling, PA Fawcett, CP., Young, PC. and Feyen, H. 1997. Vitida
Lorsirirat, K. and Pa-Obsaeng, S. 2004. Statisticabf Data-Based Mechanistic nonlinear rainfall-flovodel.
Modelling of Rainfall and River Flow in Thailand. In: Proceedings of the Twelfth International Coefeze
Journal of Geological Society of India. 64: 503-513 on Systems Engineering, ICSE 1997, Coventry

Brammer, H. 1962. Soils In: Agriculture and lane usd. University, UK, 9-11 September, Coventry. 252-257.
Wills JB. Oxford University Press, UK. 88-125. Giles, J. 2005. Solving Africa’'s Climate-data pesbl

Bruijnzeel, LA. 1990. Hydrology of moist tropicabriests Nature. 435:863.
and effects of conversion: a state of knowledgeerey Gyau-Boakye, P. and Tumbulto, JW. 2000. The Volta
UNESCO, Paris. pp224. Lake and declining rainfall and streamflows in Walta

Chappell, NA., Tych, W., Yusop, Z., Rahim, NA. and ga/set;inatl?iﬁfln.z1_fOnV|ronment, Development  and
Kasran, B. 200% Spatial significant effects of selective Y. < '

tropical forestry on water, nutrient and sedimdowé: a  Jakeman, A., Littlewood, IG. and Whitehead, PG.QL99
modelling supported review. In: Forest, Water aedgbe = Computation of the instantaneous unit hydrograptd an
in the Humid Tropics. Eds. Bonell, M. and Brujingee identifiable component flows with applicationto  wad
LA. (Eds).513-533. small upland catchments. Journal of Hydrology. 213:

Chappell, NA., Bidin, K., Sherlock, MD. and Lanaast 300.

JW. 2004. Parsimonious spatial representation of tropicallakeman, AJ. and Hornberger, GM. 1993. How much
soils within dynamic rainfall-runoff models. In: fest, complexity is warranted in a rainfall -runoff mod@el
Water and People in the Humid Tropics. Eds. M. Blone Water Resources Research. 29:2637-2649.

and Brujinzeel LA. 756-769. Kranjac-Berisavljevic, G. 1999. Recent climaticrigs in
Chappell, NA., McKenna, P., Bidin, K., Douglas,ahd  northern interior savannah zone of Ghana. Intesnati
Walsh, RPD. 1999. Parsimonious modelling of watet a Hydrological Programme, Proceedings of the
suspended sediment flux from nested catchmentstaffe International conference on Integrated Drought
by selective tropical forestry. Phil. Trans. R. Sogendon.  Management. Lessons for Sub-Saharan Africa, 20-22
B. 354:1831-1846. September, 1999. Pretoria, South Africa, IHP-V/

Chappell, NA., Sherlock, M., Macdonald, R., Najma, Technical Documents in Hydrology, No. 35, UNESCO.

and Bidin, K. 2007. Runoff processes in South Rasa: 157-165.

role of soil, regolith and rock type. In: Forest Lees, MJ. 2000. Data-based mechanistic modellirdy an
Environments in the Mekong River Basin. Eds. Sawadaforecasting of hydrological systems. Journal of
H., Araki, M., Chappell, NA., LaFrankie, JV. and Hydroinformatics. 2(1):15-34.

Shimizu, A. Springer Velag, Tokyo. 3-23. Lees, M., Young, PC., Ferguson, S., Beven, KJ. and

Chappell, NA., Tych, W., Choatai, A., Bidin, K.,rsin, Burns, J. 1994. An adaptive flood warning schewre f
W. and Chiew, TH. 2006. BARUMODEL: Combined the River Nith at Dumfries. I. River flood hydracsi
data based mechanistic models of runoff responsa in Eds. White WR. and Watts, J. John Wiley, Chichester
managed rainforest catchment. Forest Ecology an@5-75.

Management. 224:58-80. Linsley, RK., Kohler, MA. and Paulhus, JLH. 1988.

Chappell, NA., Franks, SW. and Larenus, J. 1991ltiMu Hydrology for Engineers. McGraw-Hill, UK. pp492.

Z@agfolg:{gfg?gg Szzgmf;:igof?_rlsazgomCal catentn Mutreja, KN. 1986. Applied Hydrology. New Delhi, tBa
McGraw-Hill.

Douglas, I. 1999. Hydrological investigations ofrest

disturbance and land cover impacts in South-Ea#t: A&s

review. Philosophical Transactions of the RoyaliStyc
B354:1725-1738.

Mwakalila, S., Campling, P., Feyen, J., Wyseure atd
Beven, K. 2001. Application of data-based mechanist
modelling (DBM) approach for predicting runoff



Canadian Journal of Pure and Applied Sciences 2423

generation in semi-arid regions." Hydrological Rreses. Vongtanaboon, S., Lim, HS. and Richards, K. 2008.
15:2281-2295. Databased-Mechanistic Rainfall-Runoff modelling f®r

Nash, JE. and Sutcliffe, J. 1970. Riverflow fordiras large Monsoon-Dominated catchment in Thailand.
through conceptual models, part I. A discussion ofVongtanaboon, S. and Chappell, NA. 2004. DBM
principles. Journal of Hydrology. 10:282-290. rainfall-runoff modelling of large rainforest catolents in
Post, DA. and Jakeman, AJ. 1996. "Relationship Thailand. In: Forests and Water in Warm Humid Asia.

between catchment attributes and hydrological mespo Eds. Sidle, RC., Tani, M., Nik, AR. and Tadese, TA.
o ) ny 9 . Disaster Prevention Research Institute, Uji, Jaf2&2-
characteristics in small Australian mountain ash

catchments." Hydrological Processes. 10: 877-892. 255.

. . Vongtanaboon, S. 2004. Parsimonious modelling ef th
Price, LE., Goodwill, P., Young, PC. and Rowan, JS. = = =~ . :
2000. A data-based mechanistic modelling (DBM)ramfaII runoff behaviour of large catchments inailand.

) ) . FhD Thesis, Lancaster University, UK.
approach to understanding dynamic  sedimen
transmission through Wpyredale Park ReservoirWeston, M. and Steven, D. 2005. Climate Proofing
Lancashire, UK. Hydrological Processes. 14:63-78. Africa: Climate and Africa's Development Challenge,

Romanowicz, RJ., Young, PC. and Beven, K. 2006aDatDF|D/DEFRA’ UK. pp26.

Assimilation and adaptive forecasting of water Isvi@a  Young, P. 2006. Updating algorithms in flood forstoag.

the river Severn catchment, United Kingdom. WaterFlood Risk Management Research Consortium (FRMRC)
Resources Research. 42:1-12. Research Report. URS5. pp80.

Rowan, JS., Price, LE., Fawcett, CP. and. Young, PCroung, PC. 198). Recursive estimation and timeeseri
2001. Reconstructing historic reservoir sedimeotati analysis. Berlin, Springer-Verlag. 69-98.

;a:]tdescr:Jes::]ligStr(;l/ag?;E:slzegrﬂr]n(eé?e;rg(sltl)%;rjgg.elImg. Bhysi Youn_g, PC. 1985. Th_e ins_t_rumental variable methead:

practical approach to identification and systemapaater
Sefton, CE. M. and Howarth, SM. 1998. "Relationship estimation. In: Identification and system parameter
between dynamic response characteristics and miysicestimation. Eds. Barker, HA. and Young, PC. Pergamo
descriptors in England and Wales." Journal of Higlyp.  Oxford. 1-16.

21L:1-16. Young, PC. 1991. Simplified refined instrumental

Shaw, EM. 1994. Hydrology in Practice, Chapman and/ariable (SRIV) estimation and true digital contrit:
Hall, UK. pp569. Proceedings of the first European Control Confegenc

Taylor, CJ., Pedregal, DJ., Young, PC. and Tych, WQrenobIe. Pp1295-1306: pp1295-1306.

2007. "Environmental time series analysis and faséng  Young, PC. 1992. Parallel Processes in Hydrology an
with the Captain toolbox." Environment Modellingdan Water Quality: A Unified Time-Series Approach. Joair
Software. 22:797-814. of Institution of Water and Environmental Managemen

Tsang, FC. 1995. Advances in Flood ForecastinggusinG:598'612'

Radar rainfalls and Time series Analysis. PhD Thesi Young, PC. 1993. Time variable and state dependant
Lancaster University, UK. modelling of non-stationary and nonlinear time egrin:
Developments in time series analysis. Ed. Subba, RT

Van de Giesen, N., Kunstmann, H., Jung, G., Liebg, Chapman and Hall, London. 374- 413

Andreini, M. and Vlek, PL. G. 2002. The GLOWA Valt

Project: Integrated assessment of  feedbackioung, PC. 1998. Data-based mechanistic modelling o
mechanismsbetween climate, landuse and hydrolagy. | environmental, ecological, economic and engineering
Climatic Change. Implications for the Hydrological systems. Environmental Modelling and Softwarel1@3:

Cycle and Water Management. Ed. Beniston M.122.

Advances in Global Research. 10:151-170. Young, PC. 2001. Data-based mechanistic modellimy a
Van Loon, EE. and Keesman, KJ. 2000. Identifyinglesc  validation of rainfall-flowprocess. In Model valitian:
dependent models: The case of overland flow at th@erspectives in hydrological science. Eds. Andersti.
hillslope scale. Water Resources Research. 36@):24 and Bates, PD. Chichester, J. Wiley. 117-161.

254. Young, PC. 2002. Advances in real-time flood

Vigiak, O., R. J. Romanowicz, EE. van-Loon, G. Bter forecasting. Philosophical Transactions of the Roya
and KJ. Beven. 2006. A disaggregating approach t&ociety London A. 360:1433-1450.

describe overland flow occurrence within a catchime

Journal of Hydrology. 323:22-40.



2424 Ampaduet al.

Young, PC. 2003. Top-down and data-based mechanisti
modelling of rainfall- flow dynamics at the catchmhe
scale. Hydrological Processes. 17:2195-2217.

Young, PC. 2005. "Rainfall - runoff modelling: Tedar
function models." In: Encyclopaedia of hydrological
sciences. Anderson, MG. John Wily and Sons, Lt@519
2000.

Young, PC. and Beven, KJ. 1994. "Data-based
mechanistic modelling and the rainfall flow non-
linearity." Environmetrics. 5:335-363.

Young, PC. and Minchin, P. 1991. Environmetricdim
series analysis: modelling natural systems from
experimental time-series data. International Jduofa
Biological Macromolecules. 13:190-201.

Young, PC., Pedregal, DJ. and Tych, W. 1999. Dyoam
harmonic regression. Journal of forecasting. 18:384.

Young, PC., Jakeman, AJ. and Post, DA. 1997. Recent
advances in the data-based modelling and analysis o
hydrological systems. Water Science and Technology.
36(5):99-116.

Young, PC. and Lees, MJ. 1993. The active mixing
volume (AMV): A new concept in modelling
environmental systems. In: Statistics for the esvinent.
Eds. Barnett, V. and Turkman, KF. John Wiley,
Chichester. 3-44.

Received: March 13, 2013; Accepted: April 15, 2013



