
1

3 Area Under a Curve

3.1 Introduction
The measurement of the discharge rate, Q, of streams and rivers can often be difficult to
measure.  This often means the building of weirs and the measurement of water depths
and velocities.  This involves the building of infrastructure and is therefore limited to
specific locations.  An alternative method is to carry out a procedure called dilution
gauging.  Here a known volume of a tracer, such as common salt, is added to the flow.

In the figure C0, C1,
and C2 are chemical
concentrations, where
C0 is the background
concentration.  In the
gulp injection method
a known volume V, of
tracer concentration
C1 is instantaneously
added to the stream
and, at the sampling
point the varying
concentration C2 is
measured at regular
time intervals.  The
figure below shows
the data from a real
experiment.
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We can then write an equation relating the source tracer solution to the river flow by
assuming mass conservation,

Mass of tracer in source = Mass of tracer in river
          V∗∗∗∗ C1 = Q∗∗∗∗ (C2-C0)∗∗∗∗ t

Test dimensions,
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From the plot of t versus (C2-C0) you can see that (C2-C0) varies with t.  If (C2-C0) had
been a square wave then you can see that the value of (C2-C0)∗ t is the area under the
curve, i.e. the area between the line and the t-axis, [SKETCH ON BOARD].

This also holds when (C2-C0) varies with t.  If we can find the area under the curve then
we can get a value for the flow rate of the river from this method.
You will be calculating flow rate of a river from dilution gauging during workshop 4.
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3.2 Counting the Squares
One way of finding the area
is by counting the squares
within the confines of the
curve and axis.  This method
requires you to:

1. decide on the size of
square to use,

2. and what is the smallest
fraction you can reliably
count.

2.1 Size of Square
The size of the square chosen often depends of the size of square of the graph paper
used.  In general terms square size is a balance between an accurate estimate of area
using small squares and a quicker counting time using large squares.  In the figure above
for the curve y = x2, for example, the squares are large.  If we counted only whole squares
we get a count of 9.  Each square has an area, x∗ y, of 1∗ 5 giving a counted area of 45 units.
This will obviously be an underestimate of the true value.

2.2 Fraction of a Square
We can also count fractions of a square.  Estimating 1/2 squares is usually quite reliable
and we can 'guesstimate' the partial squares.  If we do this for our concentration data we
now get a total of about 14 squares giving and area of 70 units.  This is considerably larger
than the previous estimate based on whole squares because we chose large squares
initially.

3.3 The Trapezium Rule
Instead of counting squares
we can divide the area under
the curve with a series of
vertical strips.  Where the
vertical lines intersect the
curve a chord is drawn
creating a trapezium.

If the width of the strip and
the height of the two vertical
sides are known then the area
can be found from the
formula,
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area =

1
2

(sum of ||  sides) × width

If we are finding the area under a y = mx + c graph then we only need one trapezium and
we get an exact value for the area.  However, for curved lines the sum of the area of all
the strips then gives an approximate value for the area under the curve.  This value will be
an over estimate for concave curves and an underestimate for convex curves.  Now
suppose that there are n strips, all with the same width, d say, and that the vertical edges
of the strips (i.e. the ordinates) are labelled y0, y1, y2, ... yn-1, yn.

The sum of the areas of all the strips can be written down as follows:

0.5(y0 + y1)(d) + 0.5(y1 + y2)(d) + ... +0.5(yn-2 + yn-1)(d) + 0.5(yn-1 + yn)(d)

Therefore the area, A, under the curve is given approximately by

  
A = 1

2
(d) y0 + 2y1 + 2y2 + ... + 2yn−1 + yn[ ]

This formula is known as the trapezium rule.  An easy way to remember the formula in
terms of ordinates is,

half width of strip∗ (first + last + twice all the others)

From the figure of y = x2 we have a d value of 1 and seven values of y (y0 to y6).  These
values can be read from the graph or calculated from the equation as 0, 1, 4, 9, 16, 25 and
36 respectively.  Putting these into the above equation gives,

  
A = 1

2
(1) 0 + 2 + 8 + 18+ 32 + 50 + 36[ ]

Which gives A = 73.  This is likely to be a better estimate of the area than our attempt at
counting whole squares because it approximates all those parts of squares not counted.
The value is very close to our 'guesstimated' partial square count.  The trapezium rule
value in this case will be an overestimate because of the concave nature of the curve.

3.4 Simpson's Rule
A formula which gives a better approximation than that obtained from the trapezium rule
is known as Simpson's rule.  The trapezium rule uses a straight line chord to join the
vertical strips.  This creates errors if the plotted line is highly curved.  Simpson's rule
joins three adjacent verticals with a parabola.  This rule can only be used with an even
number of strips, i.e. and odd number of ordinates.  The formula for Simpson's rule is,

  
A =

1
3

d y0 + yn{ } + 4 y1 + y3 + ...{ } +2 y2 + y 4 + ...{ }[ ]
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Evaluating for our y = x2 example gives,

Which gives A = 72.  This is likely to be a better estimate of the area than the trapezium
rule.

3.5 Getting Smaller
You can see that for all three of these methods that the smaller the square or value of d,
the more accurate the area estimate becomes.  The problem is that counting and
calculating all those numbers is very time consuming, and a computer is really required to
make a good job of this.

Example 3.1

Estimate the area under the curve 
 
y =

1
x

 between  x = 1 and 3, using

(a) the trapezium rule      (b) Simpson’s rule

with 11 ordinates, i.e. 10 strips

Answer

With 10 strips from 1 to 3, the strip width is 0.2. The curve is 
 
y =

1
x

  (see fig. Below)

  
A =

1
3

1 0 + 36{ } + 4 1+ 9 + 25{ } + 2 4 + 16{ }[ ]
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and so the following points are calculated.

Suffix x Y=1/x
0 1.0 1=1/1
1 1.2 0.83333 = 1/1.2
2 1.4 0.71429 = 1/1.4
3 1.6 0.62500 = 1/1.6
4 1.8 0.55556 = 1/1.8
5 2.0 0.50000 = 1/2
6 2.2 0.45455 = 1/2.2
7 2.4 0.41667 = 1/2.4
8 2.6 0.38462 = 1/2.6
9 2.8 0.35714 = 1/2.8
10 3.0 0.33333 = 1/3

Using the trapezium rule

  

A = 1
2

(d) y0 + 2y1 + 2y2 + ... + 2y9 + y10[ ]
∴ A = 0.5(0.2) y0 + y10 + 2(y1 + y2 + ... + y9)[ ]
∴ A = 0.5(0.2) 1.0 + 0.33333 + 2(4.84116)[ ]= 1.101565

Simpson’s rule is written as

  

A =
1
3

d y0 + y10{ } + 4 y1 + y3 + y5 +y7 + y9{ } + 2 y2 + y4 + y6 + y8{ }[ ]
∴ A =

1
3

(0.2) 1+ 0.33333 + 4(2.73214) + 2(2.10902)[ ]= 1.098662

Using the definite integral it can be evaluated exactly to give

  

1
x1

3

� dx = ln x[ ]1
3

= ln3 − ln1= 1.098612 − 0 = 1.098612

and so it is possible to compare the effectiveness of these two methods on this
calculation.

Exact value 1.098612 Error Error (%)
Trapezium rule 1.101565 0.002953 0.27%
Simpson’s rule 1.098662 0.000050 0.0045%
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Both methods used 10 strips each width 0.2. The greater accuracy of Simpson’s rule means
that for a specified degree of accuracy in the calculation fewer strips are required with
Simpson’s rule than with the Trapezium rule. In fact, using 4 strips, each of width 0.5,
Simpson’s rule gives 1.10000 as the area which is in error by 0.001388 or 0.13%. This error
is still half the size of that due to the trapezium rule using 10 strips.


