In: Process Tomography -1995, by Beck, M.S. et al (Eds.), Proceedings of the 4th Workshop
of the European Concerted Action on Process Tomography, Bergen, 6-8 April, 1995, p401-
410.

Regularised Image Reconstruction of Noisy Electrical
Resistance Tomography Data

Binley, A.!, Ramirez, A.? and Daily, W.2

YC R E S, Institute of Environmental and Biological Sciences, Lancaster University,
Lancaster, LA1 {YQ, U.K.

2Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.

ABSTRACT: Electrical resistance tomography may be used to obtain qual-
itative or quantitative information about the spatial distribution of resistivity
within a body of interest. Whereas image reconstruction techniques for the
former such as back projection methods are often insensitive to data errors,
reconstruction of quantitative images may be highly sensitive. In many cases,
lack of information about errors in the data may lead to poor images or failure
to obtain a solution to the inverse model. Simple methods may be utilised to
characterise data error, which are discussed here. We demonstrate the role of
data error on reconstruction, focusing on a regularised inverse method which
has been shown to be robust for many real applications.
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1. INTRODUCTION

The primary objective of electrical resistance tomography (ERT) is to gain some
knowledge of the spatial variation of electrical resistivities within some body, given
measurements of resistance taken within the body. This is shown schematically in
figure 1 for the case where the body is a circular vessel.
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Fig. 1: Electrical resistance tomography



Adopting a 4 electrode approach the potential difference between different pairs of
electrodes combined with knowledge of the injected current allows us to build up
a pattern of transfer resistances (measured potential difference for a unit applied
current). We may then repeat this procedure for combinations of the simple four
electrode measurement. Given a set of such measurements we are able to determine
the internal resistivity distribution within the body under examination using some
appropriate image reconstruction technique.

2. CHARACTERISATION OF DATA ERROR

Electrode measurements will be subject to a variety of error sources. Poor electrode
contact may result in systematic errors associated with particular electrodes, more
random errors may arise due to the measurement device and, in addition, sporadic
errors may occur due to non-deterministic external effects. There is then a need to
characterise the measurements in terms of likely error. Two simple ways of achieving
this goal involve determination of repeatability and reciprocity of the measurements.

Repeatability is obvious, one repeats measurements for each four electrode config-
uration, making sure that temporal affects, such as polarisation, are not induced
by the procedure. A second method of characterisation involves making use of the
reciprocal behaviour of four electrode measurements. The current source (C+) and
sink (C-} electrode may be reversed which should result in identical readings with
reversed polarity. Similarly the positive potential (P+) and negative potential (P-)
electrodes may be switched to the same effect.

In addition use may be made of the reciprocity effect by which current and potential
electrodes may be exchanged. A comparison of the two will reveal inconsistency with
the reciprocal behaviour expected under ideal conditions. In total eight readings
should give identical magnitude of the measured transfer resistance.

We may consider a simple error model in which the data variance ¢? increases with
the square of the transfer resistance R with slope ¥ for large resistances and a
minimum data variance of ¢? is observed, that is:

ot = § + $R? &)

Our error model (and inversion that follows) will assume that random errors possess
a zero mean and are normally distributed. Plots of repeatability and reciprocal
error may reveal how appropriate these assumptions are. For example, consider the
reciprocal error plot shown in figure 2 for a 15cm diameter saline filled phantom
using a combination of ‘nearest neighbour’ and ‘opposite’ measurement protocols.
For the former current is injected between an adjacent pair of electrodes and the
potential difference is measured between all other adjacent electrodes. For the latter



current is driven between diametrically opposite electrodes and potential difference
measured between adjacent electrodes. All measurements appear to be scattered
symmetrically about a zero error and follow well the error model above.
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Fig. 2: Reciprocal error using nearest neighbour and opposite measurements
for 15¢m diameter saline phantom

Plots such as that in figure 2 are useful in determining spurious measurements as any
readings which do not follow the simple relationship above which may be rejected
(or remeasured) prior to any inversion of the data.

3. REGULARISED IMAGE RECONSTRUCTION

Given some assessment of error in our measurements we are now able to consider
the inversion of the data to produce a map of the distribution of resistivities within
the body of interest. '

The model of a source free conducting inhomogeneous body 2, with resistivity dis-
tribution p(z,y), into which steady-state current is injected and the corresponding
transfer resistance R is measured, is governed by the following generalised Maxwell
equation:

V.o 'Vu=0 (2)

Equation (2) is a second order partial differential in voltage v which, for inhomo-
geneous current distributions, can only be solved numerically. Various schemes are
available for the forward solution, the finite element method often being preferred
due to its superior geometrical properties. By employing the finite element method,



equation (2) is reduced to a set of linear simultaneous equations describing the po-
tential distribution within the domain of interest. Computation of voltage at the
electrode locations may then be used to derive the transfer resistance for a given
four electrode measurement.

The formal inverse problem attempts to determine the M resistivities p; j =
1,2,....M (which we will refer to as vector of parameters m ) from a finite number
of N resistance measurements R; ¢ =1,2,....N and boundary conditions. We may
use the finite elements to define the parameter boundaries, alternatively we may
solve the forward solution on a finely discretised mesh and group or block elements
to define parameter regions.

If we define D as the vector of measured transfer resistances and F(m) as the
corresponding forward solution transfer resistances using parameters m then we
may define a weighted least squares objective function as:

X’ = (D — F(m))"W'W(D — F(m)) ®3)

Where W is a weight matrix which quantifies the uncertainty in our data D. If
there is a high level of uncertainty in a particular measurement then it should be
weighted less than the other data. If we neglect off diagonal terms in W, that is treat
the errors as uncorrelated, then W is simplified using the data standard deviations
(03, 1=1,2,3,...,N), that is:
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Minimisation of the objective function in (3) results in the well known Marquardt
method (Marquardt[1]). Note that the objective function in (3) is simply concerned
with minimisation of the data misfit. This may at first appear to be the only concern
for image reconstruction, however, in many cases we are able to use additional
information to assist in the inverse solution. The Marquardt method will often
produce extremely rough images by forcing the data misfit to its minimum and yet
there may be some knowledge that a smooth image is more realistic. For example,
in the case of geological systems one may expect abrupt changes in certain systems
but often there will be some degree of spatial correlation of the property of interest.
Pixel values will be, in some way, related to adjacent pixel values. In some cases the
correlation may be low, nevertheless this qualitative a priori information should be
used within the reconstruction.

Fortunately, to constrain image reconstruction so that smoother models are preferred
is relatively easy. Tikhonov first devised a scheme, referred to as regularisation (see
for example, Tikhonov and Arsenin[2]), which makes the inverse solution more well-
posed by forcing some dependence between the parameters values. This approach



may also be justified on the grounds of @ priori information about such dependence,
with an added benefit of a less ill-posed solution. A number of geophysicists have
realised this (see for example, Constable et al.[3]; Sasaki[4]) and employed regulari-
sation for subsurface imaging with great success.

To employ regularisation the objective function may be rewritten as:

(D =F(m))"WTW(D - F(m)) + am’Rm (4)

Where R is a square roughness matriz which is fixed and controls the scale of
parameter dependence throughout the image. In (4) o is a scaling parameter which
may be fixed or allowed to vary throughout the inverse solution.

The roughness matrix R may take various forms but will usually consist of positive
and negative integers in a banded structure. A first or second derivative difference
operator may be suitable for most applications. Sasaki[4] presents a roughness
matrix for a two dimensional quadrilateral finite element meshes. For the case
considered here the region is discretised into triangular blocks (finite elements).
A roughness matrix for this mesh may be formed in a similar manner to that of
Sasaki[4], in this case as a zero matrix with, on each row, unity for the three triangles
adjacent to the triangle corresponding to that row and -3 on the diagonal. Other
schemes are possible.

Minimising the objective function in (4) we may write the following iterative equa-
tions: :

IT"WTWJI + aR]JAm = JTWTW(D - F(m)) — cRm (5)
m;y; = m;+ Am
where J is the Jacobian given by:
OF;(m)
J"J - amj ’

F(m) is evaluated at m;.

It can easily be seen that as a approaches zero the scheme approaches that of the
basic weighted least squares method as one would expect from the objective function
in (4).

In its simplest form a constant a may be selected (see for example, Sasaki[4];

Sasaki[5]). Constable et al.[3] and deGroot-Hedlin and Constable[6] have argued



that iteratively selecting a will lead to a more desirable solution, particularly as
one is often unable to select the smoothing parameter a priori. For the examples
presented here o is determined at each iteration in such a way that the data misfit
is minimised at each step. In order to do this several sub iterations are required at
each iteration of the main scheme, although the computational effort for this need
not be excessive (Constable et al.[3]).

4. DATA ERROR AND INVERSION

Given the solution scheme we now draw attention to role of data error on the re-
construction. Figure 3a shows a synthetic model with a 1000 2cm anomaly in a 100
Qcm region which was used to compute a dataset for inversion. The measurement
scheme used was a combination of ‘nearest neighbour’ and ‘opposite’ data, as out-
lined in section 2. Using noise-free data, the regularised inverse solution produces
the model in figure 3b. In order to minimise numerical discretisation errors the for-
ward solution component of the image reconstruction was based on a finite element
mesh of 312 roughly equilateral triangular finite elements. For the inverse solution
the mesh was then parametrised into 104 triangular blocks, each based on 3 of the
elements used for the forward solution.

Adding 5% Gaussian noise to the data prior to inversion, that is, setting ¢ in (1)
to 0.05, the data were inverted using a correct form of the weight matrix in (4).
That is, the exact nature of the error distribution was known prior to inversion.
The resulting model in shown in figure 4a. Failure to achieve the correct magnitude
of the resistive anomaly is seen due to the noise level of the data, nevertheless,
location of the feature is precise. In contrast the same noisy data were inverted
without any prior knowledge of data error, that is, all measurements were equally
weighted. Figure 4b shows the result of this inversion, in which incorrect features
are created as artifacts of the noise.

It is clear from this example that the form of any data error is essential for correct
reconstruction. Determination of data error magnitude may be evaluated using
repeatability and/or reciprocity checks as outlined earlier. These estimates may be
assessed following image reconstruction using the final normalised model error:

- Diz F(m)

ag;

1=1,2,3,..,N

€

Where F(m) is evaluated at the final model m.

If the assumptions of zero mean uncorrelated error are correct then the values of e
should lie roughly between -3 and +3 and show no distinct trends. To illustrate this
figure 5a shows the normalised error, computed as above, for the model in figure
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Fig. 5: Final model residual error for model in figure 3a.
(a) 5% noise added to data and inverted as figure 4a, (b) 5% noise added
and inverted as figure 4b, (c) 5% noise added with 10% noise at electrode 1.



4a, that is, reconstruction with the correct error assessment. In contrast, figure 5b
shows the normalised error for the model of figure 4b produced with incorrect error
weighting. The first 104 measurements in this latter case show a normalised error
which is far too low and significantly different from the remaining 96 measurements.
These first 104 measurement correspond to nearest neighbour measurements, which
have in effect been weighted too little in this case by the use of incorrect uniform
weighting for the composite measurement scheme.

The plot of normalised error may also be used to reveal more subtle inconsistencies.
For example, figure 5c shows the final model errors for the reconstruction of data
generated using again the starting model in figure 3a with 5% Gaussian noise added
to the data. This case differs from that in figure 5a by increasing the error to 10%
for all measurements that used the first electrode for any potential reading. This
will then mimic a case possibly where poor electrode contact is realised at one (or
more) location (a common occurrence when dealing with porous media or similar
materials). One can now observe that the normalised errors for the final model for
this case generally follow the ideal pattern, however, a small number are noticeably
too high.

5. CONCLUSIONS

Errors in electrical resistance tomography data is unavoidable. The magnitude may
be minimised by appropriate instrument design and suitable electrode connections,
however, if quantitative images are required from the data, an assessment of the
degree of data error can vastly improve model evaluation. Regularised inverse models
provide robust tools for image reconstruction but like all non-linear inverse methods
are sensitive to noise levels in the data. Avoidance of fitting noise rather than data
is obviously necessary and yet this significant component of tomographic imaging
is often neglected. For resistance imaging use may be made of repeatability and
reciprocity checks to provide a useful guideline of the error levels and indicate any
clear outliners in the measurements. The results of the final inverse model may also
be used to confirm initial error estimates or reveal inconsistencies with the model
assumptions. For models changing temporally, noise levels may change. Normalised
errors plots will reveal these changes and any autocorrelation in the errors with little
computational effort.
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