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1. Version	history 
	
Changes	from	earlier	version	(1.0)	
Added option to read in a mesh file containing node and element connections to reduce computation 
time at execution. 
 
Changes	from	earlier	version	(0.2b)	
Major changes to input file cR3t.in to be consistent with R3t	v2.0.   
Added input file checks. 
Apparent resistivity checks on input. 
Electrode checking on input. 
Added misfit target decrease option. 
Output format of fxxx_err.dat changed. 
Added roughness to main output log. 
Output file names changed to be consistent with R3t	v2.0 
Added option for different regularisation smoothing in regularisation zones (see mesh3d.dat). 
An alternative procedure has been added for the inverse steps, allowing the regularisation parameter 
alpha to be better controlled by the user. Vtk file now contains the parameter zones defined in 
mesh3d.dat 
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2. Computer	requirements	for	cR3t	 
 
 
In this release two versions have been compiled for the Windows environment. A 64bit version, 
cR3t.exe, is provided in the package. Linux users should be able to run cR3t with the command “wine 
R3t.exe” (thanks to Rodolphe Cattin for this tip).  
 
NOTE	1:	cR3t	is	provided	as	a	standalone	executable.		It	does	not	need	to	be	installed	–	the	executable	is	
put	in	the	folder	containing	the	input	files	and	run	from	there.		Output	files	will	be	created	in	the	same	
folder.		Alternatively,	you	can	create	a	shortcut	to	cR3t.exe	and copy to the shortcut to the working 
folder. 
	
NOTE	2:	You	will	be	able	to	run	cR3t	by	double	clicking	the	executable.		However,	if	the	program	stops	
abruptly	(for	example,	due	to	an	error	in	the	input	file	or	if	you	are	trying	to	run	an	executable	compiled	
for	a	different	processor	architecture)	then	you	will	not	see	any	error	message	on	the	screen	since	the	
window	will	disappear.		Therefore,	it	is	advisable	to	run	cR3t	from	the	Command	Prompt	(just	run	CMD	
from	the	Start	Menu	–	you	may	need	to	move	your	working	directory	and	run	cR3t	from	there).	
	
NOTE	3:	All	input	files	should	be	prepared	with	a	text	editor.		[I	prefer	to	use	TextPad	(www.textpad.com)	
because	it	allows	much	greater	editing	facilities	although	any	text	editor	will	work].		It	is	important	that	
you	do	not	include	tabs	in	the	files.	These	are	often	inserted	if	you	copy	and	paste	from	Excel,	for	example.		
You	should	convert	these	tabs	to	spaces	(TextPad	will	allow	you	to	set	this	up	to	happen	automatically).				
 
cR3t has been designed so that no other commercial software is required for pre- and post-processing.  
Simple structured meshes can be created directly in 	cR3t, alternatively more complex geometry can 
be meshed using freely available codes, such as Gmsh (http://www. gmsh.info).  cR3t does not 
produce graphical output but results compatible with the freely available ParaView 
(https://www.paraview.org) are produced.  Other free codes, such as GMT 
(https://github.com/GenericMappingTools/gmt) can be used.   Users wishing to use a graphical user 
interface for meshing, modelling and plotting may be interested in ResIPy - an open source python GUI 
for cR2 and sister codes.  See https://gitlab.com/hkex/pyr2 which also includes links for standalone 
executables.  More information is also available at https://www.researchgate.net/project/ResIPy-GUI-
for-R2-family-codes. See also Boyd et al.(2019) and Blanchy et al.(2020). 
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3. Introduction	to	cR3t	 
 
cR3t is a forward/inverse solution for 3D current flow in a tetrahedral or triangular prism mesh. The 
mesh is made up of a set of elements.  Parameters (for the inverse solution) are made up of one or 
more elements.   The user must define the mesh for cR3t as a series of elements, each with either 4 
nodes (tetrahedron) or 6 nodes (triangular prism). The user must also specify the position of the 
electrodes within the mesh. The electrodes can be located anywhere in the mesh, provided they fall 
on node points.  Electrodes are specified at node points. These are the corners of the elements. The 
boundary conditions along all boundaries of the mesh are Neumann conditions (zero flux) and 
therefore if you are investigating a half space you must extend left, right and lower boundaries of the 
mesh to some distance away from the area of investigation (typically 5 to 10 times the distance – see 
later). The mesh can be made up of either tetrahedral or triangular prism mesh elements.   
 
cR3t will output calculated parameters (resistivity magnitude and phase angle) for the entire mesh 
(in inverse mode) and the user must extract results for the region they wish to study. The region is 
parameterised in terms of resistivity blocks by grouping patches of elements. 
 
Measurements are defined in a separate file as a set of four electrode indices.  Each electrode is 
defined as a “string” number and an “electrode” number (note that the “string” index is used simply to 
help group electrodes, e.g. in surface lines or boreholes). The “string” index can be the same for all 
electrodes if the user wishes not to use this labelling. Measurements are input as transfer resistances 
(not apparent resistivity).  This is to allow more flexible geometries to be analysed (e.g. columns and 
tanks).  Note that the polarity of the transfer resistance must be included in the measurement (since 
they can be positive or negative). 
 
The current version does not have upper limits set for the size of the problem that can be solved.  
However, it is important that the user has some appreciation of whether the problem they are trying 
to solve is realistic for their given hardware.   Large problems in inverse mode can be memory hungry.   
As soon as the user’s RAM is used then the computer will start using virtual memory (paging to disk) 
which can be very slow.   To help the user assess memory needs cR3t	will output an estimate of the 
memory needs early on in its execution.  For large problems it is important that the user compares this 
with physical memory (RAM) that is available. 
  
For information on solving DC resistivity forward and inverse problems see Binley (2015) and Binley 
and Kemna (2005).   Contact the author for a digital copy of the former. 
 
cR3t	is provided for non-commercial use.  The program is offered 'as this' without any warranty of any 
kind. Any users wishing to use cR3t	for commercial applications should contact the author. 
 
It is strongly recommended that the user becomes familiar with inverting DC resistivity data with 
sister code R3t	 before working with cR3t,	and inverting 2D IP data with sister code cR2.  Many of the 
concepts about meshing, parameterisation are similar and the documentation for R3t and cR2 covers 
examples that will help the user become familiar with cR3t. 
 
In cR3t complex resistivity is defined by a magnitude and phase angle.   The magnitude is equivalent 
to a DC resistivity since the phase angles are likely to be small.   In an inversion, cR3t	also computes 
the real and imaginary conductivity since these are more useful for analysis of the conduction and 
polarization of the subsurface.    Data for cR3t are supplied in terms of magnitude and phase angle of 
the measured impedance. A negative phase angle is a positive IP effect.  It is important to understand 
that the magnitude is a positive number, unlike DC resistance, which can be positive or negative.   For 
example, a surface DC resistivity dipole-dipole survey with four adjacent electrodes, 1,2,3 and 4 in 
AB-MN configuration 1,2 – 3,4 will give a negative resistance since the geometric factor is negative.  
Let’s say that the value is -1.0. If a complex resistivity survey is carried out with the same 
configuration then the magnitude would be 1.0 and the phase angle (for a non-polarizing 
subsurface) would not be zero but would be – radians, i.e. -3,141.6 mrad.  Preparing data in this way 
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can be messy and lead to confusion and so measurements with a negative geometric factor it may be 
easier to express the measurement as the equivalent with a positive geometric factor.   The values 
below are equivalent. 
 

A	 B	 M	 N	 Magnitude	
()	

Phase	angle	
(mrad)	

1 2 3 4 1.0 -3,141.6 
1 2 4 3 1.0 0.0 
2 1 3 4 1.0 0.0 

 
IP data measured in the time domain will give a resistance and chargeability (M).  The resistance is 
easily transformed to a magnitude taking care of the polarity issue above.  The chargeability can be 
transformed to an equivalent phase angle using the method described in Kemna et al. (1997).  The 
conversion is a function of the chargeability sampling and current injection frequency. Typically the 
phase angle (in mrad) is equivalent to ~-1.3M (in mV/V).  See Mwakanyamale et al.(2012) as an 
example of such a conversion for application of cR2 (the 2D sister code of cR3t) to time domain IP 
data.  Binley et al. (2016) illustrate the use of cR3t for a cross-borehole problem. 
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4. Mesh	generation	and	parameterisation 
 
cR3t models the voltage field and determines complex resistivity parameters based on a 3D mesh of 
tetrahedral or triangular prism elements (Figure 1).  Electrodes must be defined at node points 
anywhere in the mesh.  For field based applications the mesh should be extended out to a reasonable 
distance (laterally and vertically) to account for ‘infinite’ current flow.  There is no need to retain a fine 
discretisation in these ‘infinite’ boundary regions: it is good practice to let the elements gradually 
increase in size laterally and vertically outside the region of investigation.  It is recommended that the 
user defines an “inner zone” and an “outer zone” in the mesh for semi-infinite problems.   The inner 
zone will have fine discretisation, whereas the discretisation in the outer zone is coarser.  A good rule 
of thumb is to place the ‘infinite’ boundaries 5L away from the electrode array, where L is the length of 
the longest current dipole.  
 
Triangular prism meshes are effectively “structured” since the mesh is formed from a triangular mesh 
in the x-y plane that is projected in the z direction in layers.  These layers (the element height) can 
have different thicknesses but each layer must be parallel to the others.  This type of mesh may be 
convenient for fairly simple geometries but it is impossible to create complex x-y-z boundaries, for 
example, topography.  Furthermore, a triangular prism mesh can be very inefficient (computationally) 
because, in a half space problem that would be encountered for a field study, as we extend the mesh 
away from the region of interest to represent infinite x-y-z boundaries by keeping the same element 
height we can end up with very thin but wide elements. A tetrahedral mesh overcomes this as it allows 
us full flexibility in the shape of elements.  Thus we can have small elements in the area where highest 
potential gradients exist (where the survey is being carried out) but vary large elements close to 
‘infinite’ boundaries (see examples later).  Furthermore, the ability to incorporate complex topography 
permits the full range of geometries in the model.   
 
 

 
Figure	1.	Example	tetrahedral	and	triangular	prism	meshes.	

 
 
The resistivity does not vary within each element in cR3t. The resistivity distribution is defined (for a 
forward model or starting condition for an inverse model) using the element mesh.  For inversion, 
parameter boundaries must be defined.  The finest (and simplest) discretisation is achieved by having 
the parameter boundaries equal to the element boundaries – in this case each parameter is assigned to 
a finite element that is unique to that parameter.  For coarser parameter discretisation (and 
consequently faster execution of the code) parameters can be defined as collections of adjacent 
elements (see Figures 2 and 3).  If this is done then each element is assigned to a parameter number 
which will be common to more than one finite element. The advantage of having a coarse parameter 
mesh and a fine finite element mesh is that more accurate voltages (for each forward modelling step) 
are computed on the fine element mesh, while resistivities are determined on a coarser parameter 
mesh allowing faster execution.
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For a triangular prism mesh, each element contains 6 nodes.  These nodes should be numbered (as in 
Figure 4) so that the lower triangle forming the prism contains nodes 1, 2 and 3 (numbered in a 
counter-clockwise manner) and the upper triangle contains nodes 4, 5 and 6.  
 

 
 

 
 

Figure	2:	Grouping	of	triangular	
prism	finite	elements	to	form	a	single	

triangular	prism	parameter	cell.

 
	

Figure	3.		Example	finite	
element	and	parameter	

discretisation	for	a	
triangular	prism	mesh	in	

cR3t 

 
 

 
 

	
	

Figure	4:	Node	numbering	in	a	triangular	prism	element	

 
The parameter mesh can also be ‘zoned’ to permit sharp contrasts over boundaries that are known a	
priori	(e.g. at a water table).  To do this each parameter is assigned a zone number (see zone_elem 
below).  If the zone number is the same for all parameters then the inversion will seek a smooth model 
based on the gradient of (log) resistivity across all parameter boundaries.  If different zones are used 
then there will be zero smoothing imposed across the boundary between zones.  Each zone can have 
different smoothing.  For example, if a zone represents a borehole then the user may wish to have 
enhanced smoothing in this zone.   In order to do this a scalar for each zone is given (see details below 
on input to mesh3d.dat). 
 
In addition, the user may wish to keep some resistivities fixed throughout the inversion (e.g. in regions 
where the resistivity is known a	priori).  To do this, the user specifies the parameter number for a 
given element as “0”.  All elements that are designated with such a parameter number will remain 
fixed to the starting resistivity (defined in cR3t.in). NOTE: elements assigned a parameter number ‘0’ 
must be listted at the end of element matrix in mesh.dat (see below). 
 

1

2

3

4

5

6
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cR3t	doesn’t contain a mesh generator – the user needs their own software to do this.  However, there 
are a number of good meshing tools available. Gmsh (see http://www. gmsh.info) is a powerful 3D 
finite element mesh generator with a large user base with video tutorials available online. 
Alternatively, software for general finite element analysis (e.g. COMSOL) contain mesh generators, as 
do software for specific applications.  Gmsh can be used to create 3D tetrahedral meshes directly.  A 
geo file is first created, which defines the geometry.  Then the meshing is done and a msh file is 
created, which contains the element geometry.   This file then needs to be converted to a mesh3d.dat 
format.  Included in one of the examples is a geo file for Gmsh.  Jimmy Boyd (BGS/Lancaster) has 
written a python script to convert a .msh file from Gmsh to a mesh3d.dat format file for cR3t	(it also 
works for 2D meshes in R2 and cR2).  This can be found in /Mesh utilities/Jimmy Boyd.  An executable 
(gmsh2R2msh.exe) and source code (gmsh2R2msh.py) is provided in the folder. 
 
Gmsh can create triangular prism meshes but it is a bit awkward to do.  One approach is to create a 2D 
triangular element mesh and then build a triangular prism mesh (following the node number 
convention in Figure 4) from a user’s bespoke program.  
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5. Inverse	modelling	in	cR3t	v1.0 
	
 
In cR3t an iterative process solves the following equations: 
 
 JTWd

TWdJ 𝛼𝐑 ∆𝐦 JTWd
T 𝐝 𝐟 𝐦 𝛼𝐑𝐦	 (1)	

	 𝐦 𝐦 ∆𝐦, (2) 
 
where: 
𝐉	is the Jacobian, such that 𝐽 , 𝜕𝑑 /𝜕𝑚 , 
𝐝	is the data vector, 
𝐦𝒊	is the parameter vector at iteration i, 
𝐖𝐝	is the data weight matrix, assumed to be diagonal, with diagonal values 𝑊 , 1/𝜖  , where 𝜖  is 
the standard deviation of measurement i, 
𝛼 is the regularisation (or smoothing) parameter, 
𝐑	is the roughness matrix, which describes the connectivity of parameter blocks, 
∆𝐦	is update in parameter values at each iteration, 
𝐟 𝐦 	is the forward model for parameters 𝐦. 
 
In the complex algebra formulation (in cR3t) J, d, m, f() are complex (contain real and imaginary 
components). 
  
In cR3t the parameters are the logarithm of the complex electrical conductivity in each element (or 
group of elements that form a parameter block).   The data are the logarithm of the transfer 
impedances supplied by the user (which are provided as a magnitude and phase angle).   
    
Equations (1) and (2) are solved repeatedly until satisfactory convergence is achieved.   In cR3t this is 
defined by the data misfit reaching a required tolerance.   If we express data misfit as a root mean 
square error, i.e.  

	 RMS  ∑ 𝒎
,	 (3)	

 
where N is the number of measurements, then the target tolerance should be 1 (following a chi-
squared distribution). 
 
Equations (1) and (2) result from the minimisation of an objective function composed of a data misfit 
and a model misfit.   The former describes the mismatch between the observations (d) and the 
forward model (f(m)) and can be expressed as: 
 
	 Ψ 𝐝 𝐟 𝐦 𝐖 𝐖 𝐝 𝐟 𝐦 .	 (4)	
 
The model misfit can be expressed as: 
 
	 Ψ 𝐦 𝐑𝐦.	 (5) 
In an Occam’s inversion we seek to minimise: 
 
	 Ψ Ψ αΨ ,	 (6)	
	
for the largest α, i.e. we wish to obtain the smoothest distribution of resistivity that is consistent with 
the observed data. cR3t achieves this through an iterative process in which equation (1) is solved and 
equation (2) applied. At each iteration α can change, keeping it as large as possible.  cR3t does a line 
search for α at each Gauss Newton iteration (using up to 10 values  of α)  The purpose of the line 
search is to find the value of α that results in the lowest value of Ψ  for the specific iteration step. 
cR3t computes a reasonable starting value for α at the beginning of the process by assessing an equal 
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balance of the terms in the brackets of left hand side of equation (1).   The iterative process often 
results in satisfactory convergence within a few iterations.  However, this can lead to unsmooth 
models as the inversion process is attempting to find a solution too quickly.   It can be beneficial to 
slow the process.  To do this the user can select the maximum change in misfit during each iteration 
(using the target_decrease parameter – see cR3t.in input).  The user is recommended to experiment 
with either solution strategies.  
 
During each iteration cR3t will output values of Ψ  (reported as a root mean square (RMS) error) and 
Ψ  (reported as “roughness”). 
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6. Input	and	output	files 

 
cR3t requires at least three data files: cR3t.in, protocol.dat and mesh3d.dat. Note that an additional 
file is needed if you wish to compute a forward model for an inhomogeneous resistivity (magnitude 
and phase) distribution or if you want to use an inhomogeneous complex resistivity distribution as a 
starting model or reference model for an inversion.  
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In forward	 mode cR3t will output six files:  
 

o cR3t.out which will contain main log of execution. 
 

o cR3t_forward.dat will contain  the forward model for the electrode configuration in 
protocol.dat  The format of cR3t_forward.dat is the same as protocol.dat but with 3 extra 
columns: the first  contains the calculated transfer impedance magnitude (in ), the second 
contains the calculated phase angle of the transfer impedance (in mrad),  and the third 
contains the calculated  apparent resistivities (in m) (note that apparent resistivities are 
computed assuming that the z=0 is the flat surface of a half space; if this is not the case (e.g. if 
the region is a bounded domain such as a cylindrical column) then the apparent resistivities 
should be ignored).   If cR3t computes the absolute value of the geometric factor to be less 
than 1e-10m then the apparent resistivity that is output is assigned to a value of -
100000.00000 m in the output file.  This does not necessarily mean that the computed 
transfer resistances are poorly estimated – more likely that the assumptions of infinite 
boundaries or a flat topography at z=0 is not applicable. 

 
o forward_model.dat	which will contain the resistivity model.	The file will contain a value for 

each finite element in the grid (within the zone specified by the user).  The file will have eight 
columns: the element centroid x co-ordinate (in m); the element centroid y co-ordinate (in m); 
the element centroid z co-ordinate (in m); the element resistivity magnitude (in m); the 
element resistivity phase angle (in mrad); the element log10 resistivity magnitude (in log10 
m); the element log10 real conductivity (in log10 S/m); the element log10 imaginary 
(quadrature) conductivity (in log10 S/m). 

	
o forward_model.vtk will contain the complex resistivity model in vtk format. Resistivity 

magnitude, phase angle, log10 resistivity magnitude, log10 real conductivity and log10 
imaginary conductivity are stored.  This can be loaded in ParaView	(see later in this 
document), allowing easy visualisation with the mesh outline.  Note that values are only 
output for the region specified by the user. 
 

o electrodes.dat contains the co-ordinates of the electrodes.  The values are in three columns: 
x,y,z (in m). 
 

o electrodes.vtk contains the co-ordinates of the electrodes in vtk format.  The values are in 
three columns: x,y,z.  Use this file if you are working with ParaView	to look at the resistivity 
images.  Once you have opened the electrodes.vtk file in ParaView you select “apply” then 
select “Representation” as “Point Gaussian” and change the radius of the symbols. 
 

 
In inverse mode cR3t will output several files:  
 

o cR3t.out which will contain main log of execution. 
 
o f001_res.dat will contain the resistivity result of the inverse solution.  f001_res.dat will 

contain a value for each finite element in the grid (within the zone specified by the user).  The 
file will have eight columns: the element centroid x co-ordinate (in m); the element centroid y 
co-ordinate (in m); the element centroid z co-ordinate (in m); the element resistivity 
magnitude (in m); the element resistivity phase angle (in mrad); the element log10 resistivity 
magnitude; the element log10 real conductivity (in log10 S/m); the element log10 imaginary 
conductivity (in log10 S/m).   Note that values are only output for the region specified by the 
user.  Note also that for any parameter cell if the phase angle computed is positive then log10 
imaginary conductivity is undefined and a value of zero will be substituted. 
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o f001_sen.dat will contain the diagonal of the matrix [JT WT W J] (see Binley, 20015; Binley 
and Kemna, 2005) which gives an idea of the measurement sensitivity.  You will get a value for 
all elements in the region defined by the user.  High values indicate high sensitivity to data, 
low values indicate poor sensitivity.  The format is the same as f001_res.dat. Plot on a log 
scale (i.e. plot the fifth column).  Note that if parts of the mesh are output where the user fixed 
the parameter values (see input to mesh3d.dat) then the sensitivity values will be output as 
10-99.  

 
o f001.vtk will contain the resistivity, log10 resistivity, log10 real conductivity; log10 imaginary 

conductivity, log10 ‘sensitivity’ and parameter zones in vtk format.  This can be loaded in 
ParaView	(see later in this document), allowing easy visualisation with the mesh outline.  Note 
that values are only output for the region specified by the user.  Note also that for any 
parameter cell if the phase angle computed is positive then log10 imaginary conductivity is 
undefined and a value of zero will be substituted.  

 
o f001_err.dat will contain sixteen columns.  The first eight columns contain the quadrupole 

configuration (as in protocol.dat). The next column is the normalised  data misfit.  This is 
followed by the observed and modelled data recorded as apparent resistivity and as phase 
angle. The next two columns shows the original and final data weights (i.e. reciprocal of data 
standard deviation in same units as data). The last column shows a "1" if any weights  have 
been changed during the inversion, otherwise a "0" will appear. If the inversion works 
successfully then the normalised data misfit values should follow a Gaussian distribution with 
zero mean and unit standard deviation (e.g. 99% of the values should lie between -3 and +3).   
 

o electrodes.dat contains the co-ordinates of the electrodes as described above.   
 

o electrodes.vtk contains the co-ordinates of the electrodes in vtk format, as described above.  
 
 
If you have more than one dataset in protocol.dat then the files f001_res.dat,	f002_res.dat,	
f003_res.dat, etc. will be created.  Similarly, a set of *.vtk, *_sen.dat and *_err.dat	files will be output     
 
Note that in the files f***_***.*** (e.g. f001_res.dat, f001_res.vtk, etc.) a value will be output for each 
finite element in the selected output region.  However, the user may have grouped element values in 
parameters (see mesh3d.dat input) and so, in this case, more than one element will contribute to the 
overall volume of a parameter – each element within a parameter block of elements will share the 
same value of complex resistivity. 
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7. Details	of	mesh3d.dat 
 
NOTE: in explaining the input requirements for all files the required real and integer values are given 
for each input line.  Whilst integer values can be used for real terms, the converse is not true.  
 
The mesh consists of a number of node points and finite elements.  Each element is defined by its node 
points (4 for tetrahedra; 6 for triangular prisms). mesh3d.dat contains the element nodes for each 
element and then the set of co-ordinates for each node.  For an inverse model each finite element is 
assigned a parameter number and a zone number.  Groups of adjacent finite elements can share a 
parameter number.  Similarly, groups of adjacent parameters can share a zone number.  Regularisation 
is applied between parameters, but is not applied across zone boundaries.   This allows the user to 
enforce a sharp transition in resistivity across planes that are known a	priori.  The inversion output file 
f***_res.vtk will include the parameter zones, which can be useful for checking the assigned zonation 
(see unstructured mesh example later). 
 
cR3t will used the mesh information to build a matrix of node connections (a list of nodes connected to 
each node) and a matrix of element connections (a list of elements connected to each element). The 
former is used to build an index matrix for compressed storage of the conductance	matrix used to solve 
the finite element equations; the latter is used to form the roughness matrix for regularisation in the 
inverse solution.  Forming these two connectivity matrices takes some computational effort and the 
user has the option to avoid this by calculating the connectivity matrices and inserting this information 
in mesh3d.dat.  This could be beneficial in the long run if the same mesh is to be used for several 
inversions.   To use this option the advanced-flag is set to 1 in Line 1 (see below).   
 
Line 1 changed in version 1.1 
 
Line 1: (3 Int, 1 Real, 2 Int) numel, numnp, num_dirichlet, datum, npere, advanced-flag 
where numel is the number of elements in the mesh; numnp is the number of node points in the mesh, 
num_dirichlet is the number of Dirichlet (fixed potential) nodes, npere is the number of nodes in each 
element (4 for a tetrahedral mesh, 6 for a triangular prism mesh).  Normally num_dirichlet will be 
equal to 1. datum is the elevation at ground level (normally zero) or some nominal datum.  The value 
of datum is only used for apparent resistivity calculations and not affect the inverse solution; it allows 
the code to compute a correct geometric factor provided the ground surface is flat. advanced-flag is 0 
(normal mode) if basic mesh information is to be provided or 1 if the file also contains information 
about element and node connectivity (see above). 
 
  
 If (job_type (see cR3t.in file input definitions in the next section) = 0, i.e. a forward solution) then 
  

Line 2: (1 Int, npere Int) i, (kx(j, i), j = 1,npere) 
where i is the element number and kx(j,i) to kx(npere,i) are the element node numbers of 
element i. 

 
 Else (i.e. for an inverse solution) 
 

If (advanced-flag =0) then 
 

Line 2: (1 Int, npere Int, 2 Int) i, (kx(j, i), j = 1,npere), param_elem(i), zone_elem(i) 
where i is the element number, kx(j,i) to kx(npere,i) are the element node numbers of 
element i; param_elem(i) is the parameter number of element i (set param_elem(i) to 
zero if you do not want the resistivity to change from the starting resistivity, defined in 
Lines 4 or 5 in cR3t.in; zone_elem(i) is the parameter zone.  If all parameters are 
connected then set zone_elem(i) equal to the same number for all i, otherwise use 
different numbers for different disconnected region. For N zones, zone_elem(i) should be 
1,2,…,N.  
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Else 
 

Line 2: (1 Int, npere Int, 2 Int nfaces Int) i, (kx(j, i), j = 1,npere), param_elem(i), 
zone_elem(i), (connected(j),j=1,nfaces) 
where i is the element number, kx(j,i) to kx(npere,i) are the element node numbers of 
element i; param_elem(i) is the parameter number of element i (set param_elem(i) to 
zero if you do not want the resistivity to change from the starting resistivity, defined in 
Lines 4 or 5 in cR3t.in; zone_elem(i) is the parameter zone.  If all parameters are 
connected then set zone_elem(i) equal to the same number for all i, otherwise use 
different numbers for different disconnected region. For N zones, zone_elem(i) should be 
1,2,…,N. connected(1) to connected(nfaces) is a list of elements connected to element i 
(nfaces = 4 for a tetrahedral mesh or 5 for a triangular prism mesh).  Note that if there 
are less than nfaces elements connected (e.g. for a boundary element) then add zeros 
(there must be nfaces entries per element). 

 
End if 

  
End if 
  
Repeat line 2 for all numel elements. 
 
If (advanced-flag =0) then 
 

Line 3: (Int, 3 Real) i, x(i), y(i), z(i) 
where i is the node number; x(i), y(i) and z(i) are the node coordinates of node i (in m). 

 
Else 
 

Line 3: (Int, 3 Real, 60 Int) i, x(i), y(i), z(i), (connected(j),j=1,60) 
where i is the node number; x(i), y(i) and z(i) are the node coordinates of node i (in m); 
connected(1) to connected(60) is a list of nodes connected to node i.  The list should be in 
ascending order. There must be 60 entries – use 0 as an entry to pad non-existent nodes. 

 
End if 
 
Repeat line 3 for all numnp node points. 
  
Line 4: (Int) dirichlet_node 
where dirichlet_node is  the node number of a Dirichlet node. Normally only one Dirichlet node is set. 
Note: avoid setting dirichlet_node to a node number that is used as an electrode site.  Ideally 
dirichlet_node is a node far away from the electrodes. 
 
Repeat line 4 for all num_dirichlet nodes. 
 
Line 5 is new to version 1.0 
 
If (job_type (see cR3t.in file) = 1, i.e. an inverse solution) then 
 

If (the number of parameter zones is > 1) then 
 

Line 5: (Int, Real) i, alpha_scale(i) 
where i is the zone number (see Line 2) and alpha_scale(i) is the scalar for smoothing in 
that zone. 

 Else 
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  alpha_scale(1) is set to 1.0 (no input is needed to define this)  
 

End if 
 
End if 
 
END OF INPUT FOR mesh3d.dat	
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8. Details	of	cR3t.in 
 
Line1: (Char*80) header 
where header is a title of up to 80 characters 
 
Line 2: (2 Int) job_type, singularity_type 
where job_type is 0 for forward solution only or 1 for inverse solution; singularity_type is 0 (normal 
mode) if you do not want to use singularity removal in the forward model calculations or 1 if 
singularity removal is applied.  NOTE: singularity removal will increase the forward model accuracy 
significantly but in order for this to be applied (i) the ground surface must be flat and at z=0; (ii) the 
problem must be an infinite half space. Without such constraints the analytical solution for a 
homogenous problem cannot be computed and this is necessary for the singularity removal. If either 
of the two conditions do not apply then singularity_type must be 0. 
 
Line 3: (Int) num_regions_flag 
where num_regions_flag is zero if you wish to read in a file containing the starting resistivity model 
(for an inversion) or the forward model resistivity distribution.  Set num_regions_flag to any other 
number for a uniform start condition in inverse mode.   
 
If (num_regions_flag = 0) then read the following 
 

Line 4: (Character file_name) 
where file_name is the name (maximum 20 characters) of the file containing the starting 
model.  Make sure that there are no spaces before the filename and no characters in the line 
after the filename.  The file must contain just the complex resistivities for all elements in the 
mesh and these must be in element number order (as output in f001_res.dat, for example). 
Five values for each element are read: x, y, z, resistivity magnitude, resistivity phase angle.  The 
x,y,z values are not used and are designated so that an output from cR3t in the f001_res.dat  
format can be used.  The values should be separated by spaces or commas (tabs are not 
recommended – if you use this format then replace tabs with spaces).  The file can contain 
more than five columns of numbers but only the first five in each row are read for each 
element. NOTE: if you output an inverse solution from a previous run and use the reduced 
region (see Lines 9 to 11) then you cannot use this file for a forward model run since there will 
not be the required number of entries. NOTE: there should be no blank line(s) between Line 3 
and Line 4. 

 
Else  

Line 5: ( 2 Real) resis, phase 
where the resistivity magnitude resis and resistivity phase angle phase will be assigned to all 
elements.  The units of resis will be m if the measured impedances are in  and the mesh 
geometry is defined in metres. The units of phase should be mrad. 

 
End if 
 
Line 6 - 9 changed in version 2.0 to make the input follow the same notation and process as R2. 
 
If (job_type = 1, i.e. inverse mode) then read the following 
 

Line 6:  (Int, Real) inverse_type, target_decrease 
where inverse_type is: 0 (note that this value is not actually used but has been retained to 
make the input file more consistent with that of sister codes and allow for future upgrades); 
target_decrease is a real number which allows the user to specify the relative reduction of 
misfit in each iteration.  A value of 0.25 will mean that cR3t will aim to drop the misfit by 25% 
(and no more) of the value at the start of the iteration.  This allows a slower progression of the 
inversion, which can often result in a better convergence.   If you set target_decrease to 0.0 
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(normal operation) then cR3t will try to achieve the maximum reduction in misfit in the 
iteration. 
 
 
Line 7: (Real, 2 Int, Real) tolerance, max_iterations, error_mod, alpha_aniso 
where tolerance is desired misfit (usually 1.0); max_iterations is the maximum number of 
iterations; error_mod is 0 if you wish to preserve the data weights, 2 (recommended) if you 
wish the inversion to update the weights as the inversion progresses based on how good a fit 
each data point makes - this is a routine based on Morelli and LaBrecque (1996) and 
sometimes referred to as “robust inversion”. Note that no weights will be increased. 
alpha_aniso is the smoothing anisotropy: a value greater than 1 will lead to more smoothing in 
the horizontal than the vertical.  A value less than 1 will lead to exaggerated vertical smoothing. 
NOTE	smoothing anisotropy is currently not configured for a tetrahedral mesh. 
 

 
Line 8: (4 Real) min_error, a_wgt, b_wgt, rho_min, rho_max 
where min_error is the minimum magnitude error (this is to ensure that very low errors are 
not assigned and is only used if a_wgt and b_wgt are both zero), a_wgt and b_wgt are error 
variance model parameters: a_wgt is the relative error of magnitudes; b_wgt is absolute error 
of phase values (in mrad); rho_min and rho_max are the minimum and maximum observed 
apparent resistivity magnitude to be used for inversion (use large extremes if you want all data 
to be used). NOTE that if your mesh contains topography, or the surface elevation is not zero, 
or the left, right and lower extent of the mesh does not represent infinite boundaries then the 
geometric factor computed in the code will be incorrect and thus any comparison of apparent 
resistivities against upper and lower limits will be invalid.  For such a case you should set 
rho_min and rho_max to be very low and very high values, e.g. -10e10 and 10e10, respectively.  
Note also that you can select to include individual errors for each measurement in the data 
input file protocol.dat – to do this a_wgt and b_wgt should be set to 0.0. If a_wgt and b_wgt are 
set to zero then protocol.dat must contain errors for the data weights (see next section).  It is 
advisable to estimate a_wgt and b_wgt from error checks in the field data (ideally from 
reciprocal measurements - not measures of repeatability).  Typically for surface data a_wgt will 
be about 0.02 (equivalent to 2% error), b_wgt will be typically 2mrad for good data, but could 
be much higher.  
 

 
Line 9: (2 Real) z_min, z_max 
where z_min and z_max define the minimum  and maximum vertical co-ordinates of the 
volume to be output. 
 
Line 10: (Int) num_xy_poly 
where num_xy_poly is the number of x,y co-ordinates that define a polyline bounding the 
output volume.  If num_xy_poly is set to zero then no bounding is done in the x-y plane.  The co-
ordinates of the bounding polyline follow in the next line.  Note: the first and last pair of co-
ordinates must be identical (to complete the polyline).  So, for example, if you define a 
bounding square in x,y then you must have 5 co-ordinates on the polyline. The polyline must 
be defined as a series of co-ordinates in sequence, although the order can be clockwise or anti-
clockwise (see examples later). 
 
Line 11: (2 Real) x_poly(1), y_poly(1) 
where x_poly(1), y_poly(1) are the co-ordinates of the first point on the polyline. 
 
Repeat line 11 for all num_xy_poly co-ordinates. 
 

End if 
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Line 12: (Int) num_electrodes 
where num_electrodes is number of electrodes. 
 
Line 13: (3 Int) j,k, node 
where j is the “string” number of electrode; k is “electrode” number in that “string” and node is the 
node number in the finite element mesh.  The “string” label is sometimes a useful secondary label, e.g. 
for multiple lines of electrodes. 
 
Repeat Line 13 for all num_electrodes 
 
END OF INPUT FOR cR3t.in	
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9. Details	of	protocol.dat 
 
protocol.dat contains the measurement schedule (and data for inverse if selected). NOTE: cR3t reads 
impedance data not apparent resistivity data.  Data are read as the magnitude of the transfer 
impedance and the phase angle (negative for a positive IP effect). If your instrument outputs apparent 
resistivity you should convert it back to a transfer impedance (the magnitude is the measured voltage 
divided by injected current). Note also that the magnitude should be positive.  It is important to 
understand how to deal with measurements that have a DC resistivity equivalent of a negative transfer 
resistance – see comments at the end of Section 3. cR3t (in forward model mode) will output modelled 
transfer impedances and apparent resistivities to cR3t_forward.dat.   
 
Line 1: (Int) num_ind_meas 
where num_ind_meas is number of measurements to follow in the file. 
 
If (job_type = 1) then 
 

If (a_wgt = 0 AND b_wgt = 0) then 
 

Line 2: (9 Int, 4 Real) j, bh(1,k), elec(1,k), bh(2,k), elec(2,k), bh(3,k), elec(3,k), bh(4,k), 
elec(4,k), mag, phase, mag_error, phase_error 
where j is not used (but usually is used as a measurement number); bh(1,k) and 
elec(1,k) is the “string” and electrode number for the  P+ electrode; bh(2,k) and 
elec(2,k) is the “string” and electrode number for the P- electrode; bh(3,k) and elec(3,k) 
is the “string” and electrode number for the  C+ electrode; bh(4,k) and elec(4,k) is the 
“string” and electrode number for the  C- electrode; measured impedance has 
magnitude mag (in ) and phase angle phase (in mrad), mag_error is absolute error in 
magnitude (in ), phase_error is the phase error (in mrad). 
 
Repeat Line 2 for all num_ind_meas 

 
Else 
 

Line 3: (9 Int, 2 Real) j, bh(1,k), elec(1,k), bh(2,k), elec(2,k), bh(3,k), elec(3,k), bh(4,k), 
elec(4,k), mag, phase 
where j is not used (but usually is used as a measurement number); bh(1,k) and 
elec(1,k) is the “string” and electrode number for the  P+ electrode; bh(2,k) and 
elec(2,k) is the “string” and electrode number for the P- electrode; bh(3,k) and elec(3,k) 
is the “string” and electrode number for the  C+ electrode; bh(4,k) and elec(4,k) is the 
“string” and electrode number for the  C- electrode; measured impedance has 
magnitude mag (in ) and phase angle phase (in mrad). 

 
 Repeat Line 3 for all num_ind_meas. 

 
End if 

 
Else (for forward solution only) 
 

Line 4: (9 Int) j, bh(1,k), elec(1,k), bh(2,k), elec(2,k), bh(3,k), elec(3,k), bh(4,k), elec(4,k) 
where j is not used (but usually is used as a measurement number); bh(1,k) and elec(1,k) is the 
“string” and electrode number for the  P+ electrode; bh(2,k) and elec(2,k) is the “string” and 
electrode number for the P- electrode; bh(3,k) and elec(3,k) is the “string” and electrode 
number for the  C+ electrode; bh(4,k) and elec(4,k) is the “string” and electrode number for the  
C- electrode. 
 
Repeat Line 4 for all num_ind_meas. 
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End if 
 
END OF INPUT FOR protocol.dat. 
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10. Using	ParaView	to	view	results 
 

The output files for resistivity (e.g. f001_res.dat) and sensitivity map (e.g. f001_sen.dat) are text files 
that can be plotted as 3D volumes using various software.  cR3t also outputs these results in vtk 
format, which allows visualisation using ParaView (which can be downloaded from	
http://www.paraview.org/download/). The output file f001_res.vtk	can be opened directly with 
ParaView; all the user needs to do is select “apply” once the file is opened and a 3D image of 
resistivity will be shown.  From the menu bar at the top of the Paraview screen (see figure below) the 
user can select:  

 “magnitude(log10)” (log10 resistivity magnitude in m); 
 “magnitude(ohm.m)” (resistivity magnitude in m); 
 “phase(mrad)” (resistivity phase angle in mrad); 
 “Sigma_real(log10)” (log10 real conductivity in S/m); 
 “Sigma_imag(log10)” (log10 imaginary conductivity in S/m); 
 “Sensitivity_map(log10)” (log10 sensitivity map); 
 “Parameter zones” (see zone_elem in mesh3d.dat), which can be useful if zonation of 

regularisation is applied. 
 

 
 
 
 
 
The electrode co-ordinates are also stored in 
vtk format so that they can be plotted with 
the image from the inversion.  To display the 
electrodes the user must first open the 
electrodes.vtk file in ParaView	you select 
the Display (Geometry representation)” with 
“Representation”“ as “3D Glyph”. Under 
“Glyph Parameters” select “Sphere” for 
“Glyph type”. Then select Apply.  Recent 
versions of ParaView on Windows appear to 
have a bug in showing Glyph Parameters – 
occasionally not all electrodes are shown.  If 
you experience this then you can simply 
select the electrodes.vtk file in ParaView 
and select the “Representation” as “Point 
Gaussian” (see figure to the right). 
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11. Example 
	
The folder Models contains example input files for the computation of forward and inverse problems.  
There is one subfolder: Unstructured	mesh	example.  If the user wishes to work with a structured 
mesh (triangular prisms) or advanced mesh input the user should consult the examples provided with 
R3t.		
	
Unstructured	mesh	example	
	
The unstructured mesh example is based around the problem shown in Figure 5.  The problem 
consists of a 5m diameter, 10m high, cylindrical object (resistivity magnitude: 500m, phase angle -
100mrad ) placed with its top at a depth of 1m below ground level, embedded in a uniform 100m, -
10mrad background. Three lines of electrodes are shown in Figure 5, each with 25 electrodes, 2m 
spaced. The three lines are spaced 5m apart.  The entire mesh is shown in Figure 6.  Note that we are 
using this problem for the purpose of illustrating the content of input files for cR3t – we are not 
optimising the survey for this particular problem.  In fact, if the intention was to resolve the resistive 
cylinder in the subsurface then a much better electrode configuration would be used.  

 
 
Figure	5.	Resistivity	model	for	
cylinder	problem.	The	cylinder	(red)	
is	500m,	‐100mrad	the	background	
(blue)	is	100m,	‐10mrad.		Part	of	
the	background	region	has	been	cut	
out	to	show	the	cylinder.		Note	that	
this	is	a	subregion	of	the	mesh	shown	
in	Figure	6.	

  
 

 
 

Figure	6.	Tetrahedral	mesh	with	region	extending	some	distance	to	represent	infinite	
boundaries.		The	figure	on	the	right	shows	a	zoomed	section,	illustrating	higher	density	

of	nodes	near	to	electrodes	(black	symbols).	
 
The forward model is included in folder \Models\Unstructured	mesh	example\Forward.  Within 
this folder a subfolder \Models\Unstructured	mesh	example\Forward\gmsh	files contains the 
geometry file mesh.geo	used to create the mesh, and the resultant Gmsh mesh file mesh.msh.  This 
mesh file was then converted to mesh3d.dat format and the file resistivity.dat was created to 
contain the resistivity for each element.   Note that the first three columns of resistivity.dat	contain 
zeros, this is because they are not needed on input, cR3t just reads the fourth and fifth columns – the 
resistivity magnitude and phase angle for each element in the mesh.  
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As can be seen from cR3t.in, we have designated the three electrode lines as three “strings”, each 
with 25 electrodes, thus electrode “1  25” is string 1, electrode 25; electrode “2 3” is string 2, electrode 
3, etc. 
 
A measurement sequence was created and stored in protocol.dat. 	cR3t	was then run and the file 
cR3t_forward.dat, containing the calculated forward model, was created.    Note that the first 69 
measurements have a computed transfer impedance with a phase angle of approximately  radians.  
This is because these measurements for a DC resistivity problem would give a negative transfer 
resistance (refer to the comments at the end of section 3). 
 
This forward model file is shown in the Excel spreadsheet Forward_data	(noisy).xlsx.   Columns J 
and K are the computed transfer impedance values; Column L and M contain two sets of random 
numbers from a U[0,1] distribution. These are then used to perturb the measurements in columns N 
and O (with a 2% magnitude error and 1 mrad phase error).  This then serves as input for an 
inversion. 
 
The folder \Models\Unstructured	mesh	example\Inverse  contains input files for inversion of the 
noisy data created above.  Note that a different mesh has been used for the inversion to avoid biasing 
with a cylindrical shape embedded in the mesh.  The Gmsh files are included in 
\Models\Unstructured	mesh	example\Inverse\gmsh files.  Because a different mesh has been 
used for inversion, the node numbers for electrodes will be different to those used in the forward 
model, as can be seen from the entries in cR3t.in. 
 
For the inversion we use a starting model of 100 m throughout the entire mesh. We set error 
parameters a_wgt and b_wgt to be 0.02 and 1.0, respectively (since these are the correct statistics of 
the error added earlier).   
 
In cR3t.in we have set the output region to be 0m x 48m; -5m y  5m; -20m z  0m.  Figure 7 
show results from the inversion.   
 
Note that the phase angle recovered in the inversion is significantly weaker than the true value in the 
region of the anomaly.   It is important that the user appreciates the challenge of resolving IP features 
in inverse modelling to avoid over-interpretation of results.  
 
The download files for sister code R3t contains further examples to allow the user to understand how 
to zone parameter regions and how to work with structured meshes.   
 

	
	

Figure	7.	Inversion	of	resistivity	model	for	unstructured	mesh	problem	Inverse..	The	red	
symbols	are	the	electrodes.				
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If	you	make	use	of	cR3t	then	please	contact	the	author	(a.binley@lancaster.ac.uk)	so	that	you	

can	be	added	to	a	mailing	list	for	future	updates,	fixes,	etc.	
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