
cR2	v3.0	(April	2020)	 	 	

cR2	
 version	3.0	(April	2020)	

Andrew Binley

Lancaster University
April, 2020

cR2	v3.0	(April	2020)	 	 	

Contents	
	
	

 Page
1. Version history 1
2. Computer requirements for cR2 v3.0 2
3. Introduction to cR2 v3.0 3
4. Designing meshes 5
5. Parameterisation 9
6. Input and output files 12
7. Details of cR2.in 15
8. Details of protocol.dat 21
9. Details of mesh.dat 22
10. Examples 23
11. Additional codes and scripts 33
12. Getting started with ParaView 34
13. Common user errors 35
14. References 37

cR2	v3.0	(April	2020)	 	 page	1	

	
1. Version	history

	
Changes	to	cR2	from	v2.0
General (unstructured) quadrilateral mesh input now an option.
When an unstructured (triangular or quadrilateral) mesh is used the mesh.dat file now needs
specification of the Dirichlet node in line 1.
Error checking on presence of input files.
Mesh error checks when mesh is read from file mesh.dat.
Output of model roughness in main log file.
Bug fix: geometric factor calculations for triangular meshes.
Bug fix: output of electrode codes in the _err.dat file (only has impact if electrode numbers are different
to the order they are defined in cR2.in.
	
Changes	to	cR2	from	v1.9
Allocatable (dynamic) arrays are now used, meaning that there is (in theory) no problem size limit. A
sensitivity map is now produced (as a separate file and embedded with the vtk). The input of starting
resistivity and phase in cR2.in is now consistent with R2	v3.2. A bug fix has been corrected that affected
calculations with a triangular mesh when node 1 was close to (or at) an electrode (that resulted in high
errors in forward model calculations for measurements involving such an electrode). Error checks on
input of the data file (protocol.dat) are now made (to avoid incorrect electrode numbering). An option
for a more gradual progression of the inversion is now added (consistent with R2	v3.2). Documentation
has been improved by adding more illustration of meshing and parameterisation.
	
Changes	to	cR2	from	v1.8a	
Vtk output is now created. The output region can also be selected.
	
Changes	to	cR2	from	v1.8	
An option to output the Jacobian in a forward model is added.
	
Changes	to	cR2	from	v1.7	
The mesh input is completely changed and now follows a similar format to R2	v2.5
Linear solver for forward problem now uses PARDISO solver. This may result in slower execution but
much larger problems can be solved.
	
Changes	to	cR2	from	v1.6	
For a quadrilateral mesh it is now necessary to define the elevations of all electrodes – see line 22 in
cR2.in details below. This now allows topographic variation in the mesh.
	 	

cR2	v3.0	(April	2020)	 	 page	2	

	
2. Computer	requirements	for	cR2	v3.0		

In this release only one version has been compiled for the Windows environment: a 64bit version,
cR2.exe. A 32bit version is not provided because of the limited array allocation. Linux users should be
able to run cR2 with the command “wine cR2.exe” (thanks to Rodolphe Cattin for this tip). I have not
tested this, however. Users requiring a version compiled for other processors should contact the author.

NOTE	1:	cR2	is	provided	as	a	standalone	executable.		It	does	not	need	to	be	installed	–	the	executable	is	put	
in	the	folder	containing	the	input	files	and	run	from	there.		Output	files	will	be	created	in	the	same	folder.		
	
NOTE	2:	You	will	be	able	to	run	cR2	by	double	clicking	the	executable.		However,	if	the	program	stops	
abruptly	(for	example,	due	to	an	error	in	the	input	file	or	if	you	are	trying	to	run	an	executable	compiled	for	
a	different	processor	architecture)	then	you	will	not	see	any	error	message	on	the	screen	since	the	window	
will	disappear.		Therefore,	it	is	advisable	to	run	cR2	from	the	Command	Prompt	(just	run	CMD	from	the	
Start	Menu	–	you	may	need	to	move	your	working	directory	and	run	cR2	from	there).	
	
NOTE	3:	all	input	files	should	be	prepared	with	a	text	editor.		[I	prefer	to	use	TextPad	(www.textpad.com)	
because	it	allows	much	greater	editing	facilities	although	any	text	editor	will	work].		It	is	important	that	
you	do	not	include	tabs	in	the	files.	These	are	often	inserted	if	you	copy	and	paste	from	Excel,	for	example.		
You	should	convert	these	tabs	to	spaces	(TextPad	will	allow	you	to	set	this	up	to	happen	automatically).				

cR2 has been designed so that no other commercial software is required for pre- and post-processing.
Simple structured meshes can be created directly in 	cR2, alternatively more complex geometry can be
meshed using freely available codes, such as Gmsh (http://www. gmsh.info). cR2 does not produce
graphical output but results compatible with the freely available ParaView	(https://www.paraview.org)
are produced. Other free codes, such as GMT (https://github.com/GenericMappingTools/gmt) can be
used. Users wishing to use a graphical user interface for meshing, modelling and plotting may be
interested in ResIPy - an open source python GUI for cR2 and sister codes. See
https://gitlab.com/hkex/pyr2 which also includes links for standalone executables. More information is
also available at https://www.researchgate.net/project/ResIPy-GUI-for-R2-family-codes.

cR2	v3.0	(April	2020)	 	 page	3	

3. Introduction	to	cR2	v3.0
	
cR2	has been developed for imaging complex resistivity (i.e. induced polarisation) using arbitrary
electrode arrays. cR2	will compute a forward model for a given distribution of complex resistivity
(defined in terms of magnitude and phase angle). cR2 can also provide an inverse solution for a 2-D
complex resistivity distribution based on computation of 3-D current flow using a finite element mesh
based on either triangle or rectangle elements. The inverse solution is based on a regularised objective
function combined with weighted least squares (an ‘Occams’ type solution) as defined in Binley and
Kemna (2005) and Kemna et	al.(2004).
	
Parameters (for the inverse solution) are made up of one or more elements. Electrodes are specified at
node points. These are the corners of the elements. The boundary conditions along all four boundaries of
the mesh are Neumann conditions (zero flux) and therefore if you are investigating a half space you must
extend left, right and lower boundaries of the mesh to some distance away from the area of investigation
(typically 5 to 10 times the distance – see later). The mesh can be made up of either quadrilateral
elements or triangular elements.

The current version does not have upper limits set for the size of the problem that can be solved.
However, it is important that the user has some appreciation of whether the problem they are trying to
solve is realistic for their given hardware. Large problems in inverse mode can be memory hungry. As
soon as the user’s RAM is used then the computer will start using virtual memory (paging to disk) which
can be very slow. To help the user asses memory needs cR2	will output an estimate of the memory
needs early on in its execution. For large problems it is important that the user compares this with
physical memory (RAM) that is available.	

For information on solving resistivity forward and inverse problems see Binley (2015) and Binley and
Kemna (2005), the latter being useful for the full complex resistivity description. Contact the author for
a digital copy of the former.

It is strongly recommended that the user becomes familiar with inverting DC resistivity data with sister
code R2 before working with cR2. Many of the concepts about meshing, parameterisation are similar
and the documentation for R2 covers examples that will help the user become familiar with either R2 or
cR2.

In cR2 complex resistivity is defined by a magnitude and phase angle. The magnitude is equivalent to a
DC resistivity since the phase angles are likely to be small. In an inversion, cR2	also computes the real
and imaginary conductivity since these are more useful for analysis of the conduction and polarization
of the subsurface. Data for cR2 are supplied in terms of magnitude and phase angle of the measured
impedance. A negative phase angle is a positive IP effect. It is important to understand that the
magnitude is a positive number, unlike DC resistance, which can be positive or negative. For example, a
surface DC resistivity dipole-dipole survey with four adjacent electrodes, 1,2,3 and 4 in AB-MN
configuration 1,2 – 3,4 will give a negative resistance since the geometric factor is negative. Let’s say
that the value is -1.0. If a complex resistivity survey is carried out with the same configuration then the
magnitude would be 1.0 and the phase angle (for a non-polarizing subsurface) would not be zero but
would be – radians, i.e. -3,141.6 mrad. Preparing data in this way can be messy and lead to confusion
and so measurements with a negative geometric factor it may be easier to express the measurement as
the equivalent with a positive geometric factor. The values below are equivalent.

A	 B	 M	 N	 Magnitude	
()	

Phase	angle	
(mrad)	

1 2 3 4 1.0 -3,141.6
1 2 4 3 1.0 0.0
2 1 3 4 1.0 0.0

cR2	v3.0	(April	2020)	 	 page	4	

IP data measured in the time domain will give a resistance and chargeability (M). The resistance is
easily transformed to a magnitude taking care of the polarity issue above. The chargeability can be
transformed to an equivalent phase angle using the method described in Kemna et al. (1997). The
conversion is a function of the chargeability sampling and current injection frequency. Typically the
phase angle (in mrad) is equivalent to ~-1.3M (in mV/V). See Mwakanyamale et al.(2012) as an
example of such a conversion for application of cR2 to time domain IP data.

cR2	v3.0	(April	2020)	 	 page	5	

4. Designing	meshes
	
cR2 uses a mesh of finite elements to compute the forward model (in both forward and inverse mode).
As stated earlier, the mesh is based on a quadrilateral (structured or unstructured) or triangular
(unstructured) mesh of finite elements. Each element is defined by node points on its perimeter (see
Figure 4.1). cR2 computes the voltage at each node point given a dipole current source applied at a pair
of nodes. Therefore, the minimum requirement of the mesh is that the electrodes must be sited at node
points. The accuracy of the computed voltage field is strongly dependent on the discretisation of the
nodes: nodes should be closely spaced near electrode sites as voltage gradients will be high.

Figure 4.1: Example finite element showing ordering of nodes and elements (in circles).

The mesh should clearly cover the survey area laterally and the expected depth of investigation,
however, given that injected current will transfer further laterally and vertically, the mesh should extend
sufficiently in order to account for this (mimicking infinite boundaries). There is no need to retain a fine
discretisation in these ‘infinite’ boundary regions: it is good practice to let the elements gradually
increase in size laterally and vertically outside the region of investigation. Figure 4.2 illustrates the
zoning of discretisation. Note that this example is for a surface electrode array. For others, e.g. cross-
borehole, similar concepts are applied.

Figure 4.2: Extending the finite element mesh to account for ‘infinite’ boundaries. DOI is the depth of
investigation. Zone A is the region of interest; elements should be finely discretised especially near the

electrodes. Zone B has the same discretisation as A and is included to ensure good accuracy of the
forward calculations; this zone typically extends two or three time the electrode spacing. Zone C

typically extends ~5L where L is the length of the longest current dipole. Discretisation should gradually
get coarser in Zone C, moving away from the region of investigation.

1

2

3

71

77

1

2

6

55

60

7

Electrode array

~5L

~5L

DOI

B

A

C

cR2	v3.0	(April	2020)	 	 page	6	

A basic (structured) quadrilateral mesh in cR2 is defined by a grid of numnp_z rows and numnp_x
columns of nodes. This type of mesh can be set in three different ways (Figure 4.3). The simplest type is
a rectangular grid (Figure 4.3a). In cR2.in we define this as mesh_type = 4 (see later). In this case, the
elevation of all nodes in a given row is constant. The mesh is defined by the x co-ordinates of each
column, the z co-ordinates of the nodes in the top row (i.e. the topography) and the depth of each row
relative to the top row. If the topography varies across the survey area then a mesh shown in Figure 4.3b
results. Again this is mesh_type = 4. A more complex mesh structure (see Figure 4.3c) can also be created.
In cR2.in we define this as mesh_type = 5. In this case the x co-ordinates are still fixed for each column
but the elevation of all nodes in each column must be input. In comparison to mesh_type = 5 more input
defining the geometry is needed but the co-ordinates of every node is not needed.

The basic (structured) meshes described above are generated by cR2	following input of geometrical
parameters in cR2.in. A more sophisticated (unstructured) quadrilateral mesh (e.g. Figure 4.4) can also
be used in cR2	but this must be read from a separate file mesh.dat (mesh_type = 6).	The file will contain
the co-ordinates of all nodes, along with the element definitions (i.e. the four node numbers for each
element). The specific format of mesh.dat is defined later.

For more complex geometry cR2	allows the use of a triangular mesh (e.g. Figure 4.5). Again, the co-
ordinates for all nodes must be defined, along with the element definitions (i.e. the three node numbers
for each element). In cR2.in we define this as mesh_type = 3 and the mesh is read from the file
mesh.dat.

Figure 4.3: Basic (structured) quadrilateral mesh types. (a) and (b): mesh_type = 4; (c): mesh_type = 5.

(a)

(b)

(c)

cR2	v3.0	(April	2020)	 	 page	7	

Figure 4.4: Unstructured quadrilateral mesh example (mesh_type = 6).

Figure 4.5: Triangular mesh example (mesh_type = 3).

If full flexibility in mapping the geometry of the problem is required then a triangular mesh is preferred.
In some instances the use of a pre-defined quadrilateral mesh (mesh_type = 6) may be effective. It
doesn’t need to be unstructured. Figure 4.6 shows an example where rectangular geometry is used but
since the mesh cannot be defined as one set of rows and columns, the mesh must be predefined and read
from mesh.dat.

Figure 4.6: Structured quadrilateral mesh example (mesh_type = 6).

Triangular meshes not only allow full flexibility in defining geometry but also result in more
computationally efficient meshes since the extremities of the mesh can be made to have coarser
discretisation (see Figure 4.7). If you are working with a triangular mesh then you must create the mesh
and store details of the geometry of the mesh in a file mesh.dat. There are a number of good meshing
tools available. Gmsh (see http://www. gmsh.info) is a powerful finite element mesh generator with a
large user base with video tutorials available online. Alternatively, software for general finite element
analysis (e.g. COMSOL) contain mesh generators, as do software for specific applications (e.g.
groundwater code environments like GMS).

cR2	v3.0	(April	2020)	 	 page	8	

A key constraint of the structured meshes (mesh_type = 4 or 5) is that defining the geometry of
parameter cells in an inverse solution is constrained (see section 5). If the mesh is prepared in mesh.dat
(mesh_type = 3 or 6) the user has full control of parameter discretisation and zoning (see later).

Gmsh	mesh	utility	codes	for	cR2	

The cR2 download package contains some simple codes for working with Gmsh. These are located in
the	Mesh_utilities/Binley folder. GenGmshGeo2D creates a geometry file for Gmsh. This can then be
loaded in Gmsh and a 2D mesh easily created. The mesh in Gmsh is saved as a file
GenGmshGeo2D.msh which can be transformed to the mesh.dat format for cR2 using the partner code
GmshMsh2R2. The code Check_R2_Tmesh can be run to check the mesh.dat file that is created. One
thing that this code checks is the node numbering of the elements in the mesh. All finite elements
should have node numbers in a counter-clockwise direction. Check_R2_Tmesh will check this and
correct any such errors.

Figure 4.7: Example triangular mesh with variable discretisation.

Niels Claes (University of Wyoming) has provided a Matlab script (see folder Mesh_utilities/Claes) that
will create a mesh file using Gmsh.

Jimmy Boyd (British Geological Survey/ Lancaster University) has written a python script to covert
Gmsh msh files to	mesh.dat format for R2	(or	cR2). See Mesh_utilities/Boyd	

Again, note that these scripts have been produced with specific versions of Gmsh and may not be
compatible with more recent versions. Also note that the author has not tested any of these third party
scripts.

Additionally, the graphical software ResIPy (https://pypi.org/project/resipy/) allows mesh generation
within its interface of quadrilateral and triangular mesh.

	 	

cR2	v3.0	(April	2020)	 	 page	9	

5. Parameterisation
	
For a forward model calculation the resistivity for each element must be defined. For an inverse solution
the starting resistivity model must be defined. This is normally a uniform model. In inverse mode the
discretisation of parameters must be set. The simplest way to do this is to set each finite element as a
parameter. In some cases a more complex parameterisation is required. In a quadrilateral mesh we can
define ‘patch’ sizes for parameters. A patch is a group of elements, which is illustrated in Figure 5.1. The
advantage of such patching of elements is the reduced computational time, since the number of
parameters is reduced.

In some instances we may wish to fix the resistivity in part of the mesh, i.e. the parameters may only
cover a subset of the finite element mesh (see, for example, Figure 5.2). cR2 allows this type of
parameterisation by stating where the patching starts and ends in both x and y direction.

Greater control of parameterisation is allowed for user-created triangular or quadrilateral mesh (e.g.
Figure 5.3) by defining a parameter number for each element in mesh.dat. Note that if a parameter
number 0 is assigned for an element then the inverse solution fixes the resistivity of this element to the
starting value.

Figure 5.1: Defining parameter boundaries. The grey lines show the finite element mesh, the black lines
show the parameter zones. (a) Each element is a parameter. (b) Each parameter is a 2 x 2 patch of

elements. (c) Each parameter is a 3 x 1 patch of elements.

(a)

(b)

(c)

cR2	v3.0	(April	2020)	 	 page	10	

Figure 5.2: Parameterisation of a subset of the finite element mesh. The grey lines show the finite
element mesh, the black lines show the parameter zones.

Figure 5.3: Parameterisation of an unstructured mesh defined in mesh.dat. The grey lines show the finite

element mesh, the black lines show the parameter boundaries.

Further control of parameterisation is achieved through ‘zoning’ of parameters (e.g. Figure 5.4). In cR2 a
zone is defined as a congruent collection of parameters. Smoothing (in the inverse solution) does not
occur across zones. This can be useful if a	priori	information allows the user to define sharp contrasts
(e.g. at a water table boundary).

Figure 5.4: Zoning of parameterisation. The grey shaded region is a different zone to the rest of the
mesh.

Again, full flexibility is possible with an unstructured mesh (see Figure 5.5). For each element the
parameter and zone is defined in the mesh.dat file.

cR2	v3.0	(April	2020)	 	 page	11	

Figure 5.5: Zoning of parameterisation in an unstructured triangular mesh. The three colours represent
different parameter zones.

In summary, when a mesh is defined in mesh.dat, each element is assigned (i) a parameter number
(which is zero if it should remain fixed throughout the inversion); (ii) a zone number. For most cases
the parameter number of each element is the element number and the zone is 1.

cR2	v3.0	(April	2020)	 	 page	12	

6. Input	and	output	files
	

The input and output files used by cR2	are shown schematically below, and described in detail later.

	
	

	
	
cR2	requires at least two input files: cR2.in	and protocol.dat. If a user-defined triangular or
quadrilateral mesh is used then an additional input file – mesh.dat – is required. cR2.in contains
information on the geometry of the problem to be solved. protocol.dat contains the measurement
	
cR2 will output a number of files:

cR2	v3.0	(April	2020)	 	 page	13	

o cR2.out which will contain main log of execution.

o electrodes.dat contains the coordinates of the electrodes.

If the problem to be run is a forward model then cR2 will output:

o cR2_forward.dat which will contain the forward model for the electrode configuration in
protocol.dat The format of cR2_forward.dat is the same as protocol.dat:	the first column is a
measurement number, the next 4 columns contain the quadrupole electrode numbers, column 6
contains the calculated magnitudes, column 7 contains the phase angles in mrad, and column 8
contains the calculated apparent resistivities.

o forward_model.dat which will contain the resistivity distribution for your forward model (i.e.

what you specified in the input for cR2). Note that the format of these will be the same as
described below for inverse mode.

o forward_model.vtk as above but vtk format (allowing plotting in ParaView, for example).

If the problem to be run is an inverse model then cR2 will output:

o f001_res.dat which will contain the resistivity result of the inverse solution.		f001_res.dat will
contain seven columns: x, z, resistivity magnitude, phase angle (in mrad), log10(resistivity
magnitude), log10(real conductivity, in S/m), log10(imaginary conductivity, in S/m), where x,z are
coordinates at centroid of each element and the other properties are for the that element. The
format is setup to work directly with Surfer.

o f001_err.dat will contain nine columns. The first four columns contain the electrode numbers. In

the fifth column is the normalised data misfit, the next column contains the observed data
recorded as an apparent resistivity, the next column contains the equivalent apparent
resistivities for the computed model, the next column is the observed phase angles, the next
column is the computed phase angles, the next column shows the original data weight (i.e. data
standard deviation in same units as data), the next column is the final data weight, the last
columns shows a "1" if any weights have been changed during the inversion, otherwise a "0" will
appear.

o f001_res.vtk will contain resistivity magnitude, log10 resistivity magnitude, phase angle (in

mrad), log10 (real conductivity, in S/m), log10 (imaginary conductivity, in S/m), log10 (sensitivity)
all in vtk format (allowing plotting in ParaView, for example). Here, sensitivity is defined as the
diagonal of the matrix [JT WT W J] which gives an idea of the mesh sensitivity coverage (see Binley
and Kemna, 2005).

o If you have more than one dataset in protocol.dat (see later) then the files f001_res.dat,	

f002_res.dat,	f003_res.dat, etc will be created. Similarly a set of _err.dat	files will be output.

In addition	cR2 will output:

o electrodes.dat	, which contains the co-ordinates of the electrodes. The values are in three
columns: x,z,y (where y is a dummy value – set to 0.0). 	

	
o electrodes.vtk contains the co-ordinates of the electrodes in vtk format. The values are in three

columns: x,z,y (the latter being set to zero). Use this file if you are working with Paraview to look
at the resistivity images. Once you have opened the electrodes.vtk file in Paraview you select
“apply” then you select the “Glyph” icon; this allows you to plot the electrodes as small spheres
(or other objects).	

cR2	v3.0	(April	2020)	 	 page	14	

NOTE:	If cR2 fails to converge in inverse mode, all output files except the sensitivity map/resolution
matrix will still be output in order to allow the user to assess the source of the problem (the fXXX.err file
is useful for this) but the user should check the cR2.out file to ensure convergence is achieved before
using any computed resistivity models.
	
Some	comments	on	co‐ordinate	sign	convention	
When a quadrilateral mesh is created the user specifies the horizontal and vertical co-ordinates of the
rows and columns forming the mesh. The convention here (see line 9 in cR2.in) is for the vertical co-
ordinates to be specified as depth (not elevation). When these are output in a .dat file (e.g.
forward_model.dat, for a forward model, or f001.dat, for an inversion) then the vertical co-ordinate
sign is changed. This is so that programs like Surfer will show the section properly. The same switching
of sign is changed in the vtk output (e.g. forward_model.vtk and f001.vtk). The electrode co-ordinates
(output in electrodes.dat and electrodes.vtk) will also have a switched sign for the vertical co-
ordinates.

Triangular meshes should be created with the vertical co-ordinate representing elevation, not depth.
And so when a triangular mesh is used, the sign change is not made in any of the output files listed above.

cR2	v3.0	(April	2020)	 	 page	15	

7. Details	of	cR2.in

Line1: (Char*80) header

where header is a title of up to 80 characters

Line 2: (2 Int, Real, 2 Int) job_type, mesh_type, flux_type

where job_type is 0 for forward solution only or 1 for inverse solution; mesh_type is 3 for
triangular mesh or 4 for a regular quadrilateral mesh, 5 for a more generalised quadrilateral mesh
or 6 for a general quadrilateral mesh (see section 5); flux_type is 2.0 for 2D current flow (i.e. line
electrodes, which are infinitely long orthogonal to the section) or 3.0 (usual mode) for fully 3D
current flow (i.e. point electrodes).

If mesh_type is 3 or 6 then the file mesh.dat must be supplied which contains the mesh details including
node coordinates and element indices (see details later).

If (mesh_type = 4) then a regular quadrilateral mesh is to be used and the following are read:

Line 3: (2 Int) numnp_x, numnp_z

where numnp_x is number of nodes in the x direction (horizontal) and numnp_z is the
number of nodes in the z (vertical) direction

 Line 4: (numnp_x Real) xx

where xx is an array containing x coordinates of each of numnp_x node columns

Line 5: (numnp_x Real) topog

where topog is an array containing elevations of each of numnp_x node columns. If the
topography is flat then set topog to zero for all values.

 Line 6: (numnp_z Real) zz

where zz is an array containing the depths of each of numnp_z node rows relative to the
topog array. Set zz(1) to zero and the other values to a positive number (i.e. zz represents
depth, not topography).

Else if (mesh_type = 5) then a more generalised quadrilateral mesh is to be used and the following are
read:

Line 7: (2 Int) numnp_x, numnp_z
where numnp_x is number of nodes in the x direction (horizontal) and numnp_z is the
number of nodes in the z (vertical) direction

 Line 8: (numnp_x Real) xx

where xx is an array containing x co-ordinates of each of numnp_x node columns

 Line 9: (numnp_z Real) zz

where zz is an array containing elevations (not depths) of each of numnp_z node rows for
column 1 in the x direction. For each column of nodes zz(1) is the topography.

cR2	v3.0	(April	2020)	 	 page	16	

 Repeat Line 9 for all numnnp_x columns.

End if

Note: It is wise to add a carriage returns to break up a long list of input values (in Line 4, 5, 6, 8 and 9, for
example). Don’t write more than 20 numbers on each line as the compiler may not like it.

If (mesh_type = 3) then read the following

Line 10: (Real) scale

where scale is a scaling factor for the mesh co-ordinates. This is usually 1.0 but if a standardised
mesh is used, say for a unit circle, then this scaling factor is useful to adjust the mesh for a specific
problem. Set scale=1 if you do not wish to change the coordinates of the mesh defined in
mesh.dat.	

End if

Line 11: (Int) num_regions

where num_regions is number of resistivity regions that will be specified either as starting condition for
inverse solution or actual model for forward solution. The term “region” has no significance in the
inversion – it is just a means of inputting a non-uniform resistivity as a starting model for inversion or for
forward calculation.

If (num_regions = 0) then read the following

Line 12: (15*Char) file_name

where file_name is the name of the file containing the resistivitities from a previous inversion
(the _res.dat file that had been produced). Note that the file_name must be no more than 15
characters and there should be no spaces before the file name and no characters in the line after
the file name.

Else

Line 13: (2 Int, Real) elem_1, elem_2, mag, phase

where the resistivity expressed as a magnitude (mag) and phase angle (phase) (in mrad) will be
assigned for all elements from elem_1 to elem_2 (inclusive). Note that for a quadrilateral mesh
the elements are numbered down columns first (top to bottom) then along rows (left to right).

 Repeat Line 13 for all num_regions

End if

NOTE:	you	must	assign	all	elements	a	starting	value.		The	number	of	elements	in	the	mesh	is	(numnp_x‐1)	x	
(numnp_y‐1)	for	a	quadrilateral	mesh.		All	these	elements	must	be	assigned	a	resistivity.		Note	also	that	if	
you	assign	an	element	a	value,	it	will	overwrite	any	previous	assignment.

If (job_type = 1. i.e. an inverse solution) then read the following

If (mesh_type = 4 or 5) then read the following

Line 14: (2 Int) patch_size_x, patch_size_z

cR2	v3.0	(April	2020)	 	 page	17	

where patch_size_x and patch_size_z are the parameter block sizes in the x and z
direction, respectively. We differentiate between parameter size and element size to
allow faster computation. The larger the patch size the few parameters and the faster the
inversion, however, if we increase it too much we will reduce the flexibility to create
variation of resistivity. If computational time is not a problem then use a patch size of 1
for x and z. Note that the number of elements in the x direction must be perfectly divisible
by patch_size_x and the number of elements in the z direction must be perfectly divisible
by patch_size_z otherwise set them both to zero. See examples in Figure 5.1. For Figure
5.1a patch_size_x =1 and patch_size_z = 1. For Figure 5.1b patch_size_x =2 and
patch_size_z = 2. For Figure 5.1c patch_size_x =1 and patch_size_z = 3.

If (patch_size_x = 0) and (patch_size_z = 0) then read the following

Line 15: (2 Int) num_param_x, num_param_z

where num_param_x and num_param_z are the number of parameter blocks in
the x and z directions

Line 16: (1+num_param_x Int) npxstart, npx(i), i=1,num_param_x

where npxstart is the column number in the mesh where the parameters start;
npx specifies the number of elements in each parameter block in the x direction
	
Line 17: (1+num_param_z Int) npzstart, npz(i), i=1,num_param_z

where npzstart is the row number in the mesh where the parameters start; npz
specifies the number of elements in each parameter block in the z direction

See example in Figure 5.2 (copied below). For this example we would set
num_param_x = 12 and num_param_z = 9. Then we would set Line 17 as 3,
2,1,1,1,1,1,1,1,1,1,1,2 and Line 17 as 1, 1,1,1,1,1,1,1,1,2.

End if

 End if

NOTE:	the	following	line	input	is	different	to	v1.9	and	older	versions	of	cR2		

Line 18: (Int, Real) inverse_type, target_decrease

where inverse_type is 0 for pseudo-Marquardt solution or 1 for regularised solution with linear
filter (usual mode) or 4 for blocked linear regularised type (see also line 21). Note that the
blocking defined here is only for a quadrilateral mesh – for blocking within a triangular mesh see
the details for preparing mesh.dat later. target_decrease is a real number which allows the user
to specify the relative reduction of misfit in each iteration. A value of 0.25 will mean that cR2 will

cR2	v3.0	(April	2020)	 	 page	18	

aim to drop the misfit by 25% (and no more) of the value at the start of the iteration. This allows
a slower progression of the inversion, which can often result in a better convergence. If you set
target_decrease to 0.0 then cR2 will try to achieve the maximum reduction in misfit in the
iteration.

Line 19: (Real, 2 Int, Real) tolerance, max_iterations, error_mod, alpha_aniso

where tolerance is desired misfit (usually 1.0); max_iterations is the maximum number of
iterations; error_mod is 0 if you wish to preserve the data weights, or 2 if you wish the inversion
to update the weights as the inversion progresses based on how good a fit each data point makes.
The routine used is based on Morelli and LaBrecque (1996). Note that no weights will be
increased. The smoothing factor used in the code (alpha) is searched for at each iteration. The
search is done over a range of steps in alpha, the number of steps is 10. alpha_aniso is the
anisotropy of the smoothing factor, set alpha_aniso > 1 for smoother horizontal models,
alpha_aniso < 1 for smoother vertical models, or alpha_aniso=1 for normal (isotropic)
regularisation.

Line 20: (5 Real) min_error, a_wgt, b_wgt, rho_min, rho_max

where min_error is the minimum magnitude error (this is to ensure that very low errors are not
assigned and is only used if a_wgt and b_wgt are both zero), a_wgt and b_wgt are error variance
model parameters: a_wgt is the relative error of magnitudes; b_wgt is absolute error of phase
values (in mrad); rho_min and rho_max are the minimum and maximum observed apparent
resistivity magnitude to be used for inversion (use large extremes if you want all data to be used).
NOTE that if your mesh contains topography, or the surface elevation is not zero, or the left, right
and lower extent of the mesh does not represent infinite boundaries then the geometric factor
computed in the code will be incorrect and thus any comparison of apparent resistivities against
upper and lower limits will be invalid. For such a case you should set rho_min and rho_max to be
very low and very high values, e.g. -10e10 and 10e10, respectively. Note also that you can select
to include individual errors for each measurement in the data input file protocol.dat – to do this
a_wgt and b_wgt should be set to 0.0. If a_wgt and b_wgt are set to zero then protocol.dat must
contain errors for the data weights (see next section). It is advisable to estimate a_wgt and b_wgt
from error checks in the field data (ideally from reciprocal measurements - not measures of
repeatability). Typically for surface data a_wgt will be about 0.02 (equivalent to 2% error), b_wgt
will be typically 2mrad for good data, but could be much higher.

Line 21: (num_param_x Int) param_symbol

If you have specified zoning of parameters (inverse_type = 4 in line 18) so that each zone is
disconnected from other zones then for a quadrilateral mesh (see Figure 4.9) the zones are
specified by producing a simple plan of the parameter mesh. You must input for each row of
parameters an integer representing the parameters. This is repeated for each row. Make sure
that you put a space between each integer. As an example consider the zoned mesh in Figure 4.9
(copied below) with 20 elements in the x direction and 12 elements in the z direction. In this
example we wish to zone the region shaded. As each element is a parameter then the patch size
in x and z is 1, so in total there are 20 parameters (x) by 12 parameters (z). If we want to set the
boundary of the shaded region so that there is no smoothing to the unshaded region then we
would input:

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

cR2	v3.0	(April	2020)	 	 page	19	

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1
1
1
1

Note that we have used 1s and 2s to define the regions. We could have used any other integer.

If for the problem above we had a patch size of 2 in x and z then Line 21 would be:

1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

If we had defined the problem to have a patch size in x of 4 and a patch size in z of 2 then Line 21
would be:

1 2 2 2 1
1 2 2 2 1
1 2 2 2 1
1 2 2 2 1
1 1 1 1 1
1 1 1 1 1

Repeat line 21 for all num_param_z

End if

End if

Line 22: (Integer) num_xz_poly
where num_xz_poly is the number of x,z co-ordinates that define a polyline bounding the output volume.
If num_xz_poly is set to zero then no bounding is done in the x-z plane. The co-ordinates of the bounding
polyline follow in the next line. NOTE: the first and last pair of co-ordinates must be identical (to
complete the polyline). So, for example, if you define a bounding square in x,z then you must have 5 co-
ordinates on the polyline. The polyline must be defined as a series of co-ordinates in sequence, although
the order can be clockwise or anti-clockwise (see examples later). NOTE: cR2 stores the vertical co-
ordinates for nodes in a structured quadrilateral mesh with a convention positive upwards. For example,
if the ground surface has an elevation of 0m and you wish to output to a depth of 8m then z=-8m must be
used for the lower boundary of the polygon. Similarly, if the ground surface elevation is 100m and you
wish to output to a depth of 8m then z=-92m must be used for the lower boundary of the polygon. If a

cR2	v3.0	(April	2020)	 	 page	20	

user-defined triangular or quadrilateral mesh is used (i.e. supplied in mesh.dat) then the co-ordinates
specified in the mesh file are used and the above comments about sign convention do not apply.

Line 23: (2 Real) x_poly(1), z_poly(2)
where x_poly(1), z_poly(1) are the co-ordinates of the first point on the polyline.
Repeat line 23 for all num_xz_poly co-ordinates.

Line 24: (Int) num_electrodes

where num_electrodes is number of electrodes

If (mesh_type = 3) then

Line 25: (2 Int) j, node

where j is the electrode number and node is the node number in the finite element mesh

Else

Line 26: (3 Int) j, column, row

where j is the electrode number, column is the column index for the node the finite element mesh
and row is the row index for the node in the finite element mesh. The column value must be in
the range 1 to numnp_x and the row value must be in the range 1 to numnp_z. Both values must
be integer values.

End If

Repeat Line 25/26 for all num_electrodes

END OF INPUT FOR cR2.in

cR2	v3.0	(April	2020)	 	 page	21	

8. Details	of	protocol.dat	

protocol.dat contains measurement schedule (and data for inverse if selected)

Line 1: (Int) num_ind_meas

where num_ind_meas is number of measurements to follow in file

If (job_type = 1) then

If (a_wgt = 0 AND b_wgt = 0) then

Line 2: (5 Int, 4 Real) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k), mag, phase, mag_error,
phase_error
where j is not used (but usually is used as a measurement number in the file); elec(1,k) is the
electrode number for the P+ electrode; elec(2,k) is the electrode number for the P-
electrode; elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode
number for the C- electrode; measured resistivity has magnitude mag (in ) and phase angle
phase (in mrad), mag_error is absolute error in magnitude (in ), phase_error is the phase
error (in mrad).

Else

Line 2: (5 Int, 2 Real) j, elec(1,k), elec(2,k),elec(3,k),elec(4,k), mag, phase
where j is not used (but usually is used as a measurement number in the file); elec(1,k) is the
electrode number for the P+ electrode; elec(2,k) is the electrode number for the P-
electrode; elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode
number for the C- electrode; measured resistivity has magnitude mag (in ) and phase angle
phase (in mrad).

End if

Repeat Line 2 for all num_ind_meas

Else (for forward solution only)

Line 3: (5 Int) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k)
where j is not used (but usually is used as a measurement number in the file); elec(1,k) is the
electrode number for the P+ electrode; elec(2,k) is the electrode number for the P- electrode;
elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode number for the C-
electrode.

Repeat Line 3 for all num_ind_meas

End if

You can add as many datasets to the file protocol.dat. Just concatenate the datasets into one file. cR2	
will continue to read and process data using the settings defined in cR2.in	

END OF INPUT FOR protocol.dat
	
	

	

cR2	v3.0	(April	2020)	 	 page	22	

9. Details	of	mesh.dat	

It is useful if your mesh generator permits ‘materials’ to be defined, allowing some zoning of the mesh
(to permit blocking at interfaces). Also, you may find it beneficial (for computational efficiency) to
create a coarse mesh to define the parameters and then refine this mesh (splitting a triangle element
into more elements) to have more elements for the forward solution. The simplest mesh consists of an
equal number of parameters and elements and one zone. More complex arrangements allow for
grouping of elements into parameters and multiple zones. Regularisation is not applied at the interface
of zones.

NOTE:	Line 1 changed from version 3.3

Line 1: (2 Int) numel, numnp, ndirichlet

Where numel is the number of triangle elements, numnp is the number of nodes and ndirichlet is the
node number of a specified dirichlet node, which should be a node far away from all electrode nodes. If
ndirichlet is set to zero then the code will compute the node that is furthest away. However, for some
geometries (e.g. a circular region) the node that is the furthest away based on average distance may be
close to one of the nodes. For such problems it is advisable to set the node in the centre of the mesh as
the dirichlet node to avoid biasing of the computed potential field.

Line 2: (6 Int) n, index(1,n), index(2,n), index(3,n), param(n), zone(n)

Where n is the element number; index(1,n), index(2,n) and index(3,n) are the node numbers of the
element, numbered in a counter-clockwise direction (cR2 will check if this is correct for a triangular or
quadrilateral mesh that is read from mesh.dat); param(n) is the parameter number of the element (to
make every element a parameter then make this value equal to the element number); zone(n) is the
zone number for element n. To have one zone make zone(n) equal to 1 for all elements. Zones must be
connected elements. Parameters cannot occupy more than one zone. NOTE also, to make an parameter
fixed to the starting resistivity, set param(n) to zero but note that if this is done all elements with
param(n) = 0 must be at the end of the block of elements (see Surface 8 example below). This will
involve reordering elements and care must be taken to ensure that any associated files with the element
mapping (e.g. a start resistivity file, if used) but follow the same new element numbering.

Repeat line 2 for all numel elements.

Line 3: (Int, 2 Real) n, x(n), z(n)

Where n is the node number; x(n), z(n) are the coordinates of node n.

Repeat line 3 for all numnp nodes.

END OF INPUT FOR	mesh.dat

cR2	v3.0	(April	2020)	 	 page	23	

10. Examples	
	
The folder “Examples” contains a number of worked examples of cR2 to illustrate how to setup input
files and work with model output.
	
Surface	electrode	array	1	–	getting	started	
The subfolder “Examples/Surface_1” contains an example synthetic model of a surface electrode array
using a dipole-dipole measurement scheme. The example is a modification of the one in Binley and
Kemna (2005). For this problem 25 electrodes are positioned at 2m spacing on a flat surface of a half
space. The electrodes are numbered 1 to 25 from left to right. A forward model is setup to determine
the measured transfer resistances for a dipole-dipole scheme with 117 measurements. The resistivity
model is shown in Figure 10.1. A small target with resistivity 10 m, -10mrad lies within a 100 m. -
10mrad half space: positioned vertically between depths 1m and 4m and horizontally between 14m and
16m.

Figure 10.1: Definition of synthetic model for surface array 1 problem	

	
The subfolder “Examples/Surface_1/Forward” contains the protocol.dat file for the forward problem.
Also contained in the folder is the file cR2.in which defines the geometry and resistivity model. Since
the model is a half space the finite element mesh must extend significantly away from the region of
investigation (horizontally and vertically downwards). The mesh developed consists of 225 node
columns and 49 node rows (i.e. 11,025 nodes, 10,752 elements). The file cR2.in shows how the mesh is
designed to get progressively coarser away from the region of study. Note that the co-ordinates of the
mesh have been set so that electrode 1 is at (0,0) for this problem. In the mesh electrode 1 is located at
node column 17 (i.e. there are 16 elements to the left of the electrode array to represent an infinite
boundary condition to the left. For this example 8 elements are placed between electrodes and so node
2 is at node column 25, node 3 is at column 33, etc. Since the electrodes are located on the ground
surface the row node for all electrodes is 1. All the electrode positions are assigned in cR2.in. The file
also assigns the resistivity for all elements. For this problem it is done by defining the resistivity of 9
congruent blocks of elements. First all elements in the mesh are set to 100 m, -10mrad and then 8
columns of vertically adjacent elements are defined to set the 10 m, -100mrad anomaly (remember
that the elements are numbered vertically then horizontally).

When cR2 is run the output files are:

cR2.out, which contains the main log of execution
electrodes.dat, which contains the electrode co-ordinates
electrodes.vtk, which contains the electrode co-ordinates in vtk format
cR2_forward.dat, which contains the forward model, i.e. the 117 impedances. Note that the
apparent resistivity for each of the 117 measurements is also stored.
forward_model.dat, which contains the co-ordinates of the centroid of each finite element in the
mesh, the resistivity magnitude and phase angle of each finite element along with the logarithm
(to base 10) of the resistivity and the real and imaginary conductivity. This file is useful for
checking if the resistivities were defined correctly in cR2.in	
forward_model.vtk, which contains the forward model in vtk format (see Figure 10.2).

0 5 10 15 20 25 30 35 40 45
-8

-4

0

Distance (m)

Depth
(m) Electrode10 m

-100 mrad
100 m
-10 mrad

cR2	v3.0	(April	2020)	 	 page	24	

Figure 10.2: Paraview plot of forward_model.vtk 	

The subfolder “Surface_1/Inverse” contains files for running the inversion of the transfer resistances
determined above. For this a uniform starting resistivity of 100 m, 0mrad is defined in the file cR2.in.
The ‘data’ to be inverted are stored in file protocol.dat: here the values are simply the impedances
(magnitude and phase angle) that appeared in the cR2_forward.dat file described earlier.

For the inverse problem we have used a patch_size of 4 in both x and z directions, i.e. each inverse
parameter is a 2 by 2 block of finite elements.

When cR2 is run in this case the output files are:

cR2.out, which contains the main log of execution;
electrodes.dat, which contains the electrode co-ordinates;
electrodes.vtk, which contains the electrode co-ordinates in vtk format
f001_res.dat, which contains the computed resistivity magnitude and phase angle, log10 resistivity
magnitude, real and imaginary conductivity for each finite element in the output region defined in
cR2.in;
f001_res.vtk, which, in vtk format, contains the values in f001_res.dat and also the sensitivity
map;
f001_err.dat, which contains the misfit for each of the 117 measurements.

	
Figure 10.3 shows the results of the inversion (compare with Fig 5.8 of Binley and Kemna(2005)). This
is an image map of the results in f001_res.vtk. The file f001_res.dat could also have been used, e.g. with
Surfer. Note that only the region within the electrode array and to a depth of 8m has been plotted.

cR2	v3.0	(April	2020)	 	 page	25	

In Figure 10.4 the sensitivity map is also shown. The values are computed with the equation 5.20 of
Binley and Kemna (2005). High values indicate areas of high measurement sensitivity.

Figure 10.3: Inverse model for surface array 1 problem with dp-dp array

Figure 10.4: Sensitivity map for inverse model for surface array 1 problem with dp-dp array

Surface	electrode	array	2	–	adding	topography	
The subfolder “Examples/Surface_2” contains an example similar to the previous case but with varying
surface topography. Here the ground surface slopes from 0m at electrode 1 to 1m in the centre of the
electrode array and then drops back to 0m at electrode 25 (see Figure 10.5). The file cR2.in is now

cR2	v3.0	(April	2020)	 	 page	26	

different for the forward and inverse model runs through the addition of topography data. Figure 10.6
shows the inverse solution for this case.

Figure 10.5: Definition of synthetic model for surface array 2 problem	

Figure 10.6: Inverse model for surface array 2 problem

	

cR2	v3.0	(April	2020)	 	 page	27	

Surface	electrode	array	3	–	triangular	meshing	
The folder Examples/Surface_3/ contains input files for running a forward and inverse problems for the
dipole-dipole survey (from Surface electrode array 1) using a triangular mesh. The mesh is defined in
mesh.dat. It contains 4,204 elements and 2,160 nodes. The region modelled extends approximately
200m to the left and right of the electrode array, and approximately 200m beyond the zone of
investigation.

The folder Examples/Surface_3/Forward contains the input files for a forward model. In this mesh the
first 40 elements represent the 10m, -100mrad anomaly: in cR2.in the two regions are defined. Figure
10.7 shows a plot of the forward model definition using ParaView. Note that the region extracted for
plotting is based on the position of the centroid of elements and consequently a ‘jagged’ boundary often
exists for triangular mesh output.

Figure 10.7: Definition of forward model using a triangular mesh
	
The folder Examples/Surface_3/Inverse_1 contains the input files for an inversion of the data using a
triangular mesh. Figure 10.8 shows the result, plotted in ParaView. Figure 10.9 shows the sensitivity
map for this problem.

cR2	v3.0	(April	2020)	 	 page	28	

Figure 10.8: Inversion of dipole-dipole data.	

Figure 10.9: Sensitivity map for triangular mesh problem	
	
The folder Examples/Surface_3/Inverse_2 contains the input files for an inversion of the same data
using anisotropic regularisation to minimise lateral smoothing (see Figure 10.10).

	

	
Figure 10.10: Inversion of dipole-dipole data with enhanced vertical smoothing.	

	

cR2	v3.0	(April	2020)	 	 page	29	

The folder Examples/Surface_3/Inverse_3 contains the input files for an inversion of the same data as
above but in this example the inverse region is blocked into two zones: one representing the low
resistivity magnitude/high phase angle zone in Figure 10.7 and the other representing the remainder of
the mesh. In this case the 40 elements that occupy the area where the low resistivity feature exists are
given a different zone to the other elements in the mesh (see input for mesh.dat). These 40 elements
are 4165 to 4204 in mesh.dat: a zone number of 2 is assigned to them (zone = 1 is assigned to the other
elements). Figure 10.11 shows the resulting inversion. The inversion has been forced to honour the
known boundaries and as a result the solution is near perfect. There is subtle variation in the zones,
however – see lower image in Figure 10.11.

	

Figure 10.11: Inversion of dipole-dipole data with region blocking. The lower figure is included to show

that variation does exist within the zones.

The folder Examples/Surface_3/Inverse_4 contains input files to illustrate the effect of fixing resistivity
using a triangular mesh. In this example we set the resistivity of some elements to a fixed value. To do
this we set their parameter number to zero in mesh.dat. Note that to do this we have to move this block
of elements in mesh.dat to the end of the list of elements.	In this example we set the 40 elements in the
‘anomaly’ area to be fixed to whatever value is assigned as the starting model (in cR2.in) (in this case 20
m, -20mrad). All other elements can change in the inversion. The inversion is show in Figure 10.12.

cR2	v3.0	(April	2020)	 	 page	30	

Note that the true target is 10 m and -100 mrad and so by forcing the region to be 20 m and -20mrad
the adjacent elements are affected as the inversion compensates for the difference.
	

	
	

	
Figure 10.12: Inversion of dipole-dipole data with 40 elements (where the ‘target’ is located) set to 20
m, -20mrad (the true value is 10 m, -100mrad and so some smearing around the ‘target zone’ exists).
	
Surface	electrode	array	4	–	quadrilateral	mesh	in	mesh.dat	
The folder Examples/Surface_4/ contains input files for running a forward and inverse problem when a
quadrilateral mesh is read from mesh.dat (i.e. mesh_type = 6). The example used here is the same
setup as Surface electrode array 1 using a dipole-dipole configuration, but rather than defining a mesh
in cR2.in, it is read from the file mesh.dat. Figure 10.13 shows the inverse model. Clearly for this
problem the use of a separate mesh file is unnecessary, but it allows the user to understand the way in
which a pre-defined quadrilateral mesh can be used.

cR2	v3.0	(April	2020)	 	 page	31	

Figure 10.13: Inversion of dipole-dipole surface electrode data using quadrilateral mesh read from

mesh.dat	

	
Surface	electrode	array	5	–	field	example	
The folder Examples/Surface_5/ contains input files for a field survey from a UK site. The purpose of
the survey was to identify the depth of a sandstone aquifer and the nature of the superficial (glacially
deposited) sediments above it, with a view to assessing the vulnerability of the sandstone to surface
sourced contamination. The survey was carried out in time domain IP mode with an Iris Syscal Pro
using 48 electrodes at 2m spacing. Measured transfer resistances and chargeabilities were converted
to equivalent magnitudes and phase angles. Figure 10.14 shows the resulting inversion. Figure 10.13
also shows the sensitivity map for the inversion. The sandstone boundary is approximately 10m deep
(confirmed by drilling). The clay rich sediments above are revealed by low resistivity magnitude and a
low phase angle. For more information see Mejus (2014). In this example the data errors are set for
each measurement in protocol.dat.

	

	

	

cR2	v3.0	(April	2020)	 	 page	32	

	
Figure 10.14: Inversion of field data.

Final	note	on	examples	
The examples included should give the user a good start in setting up files for their own datasets. Again,
it is strongly recommended that the user becomes familiar with sister code R2 before working with
cR2. The examples provided with R2 show how cross-borehole surveys can be inverted – exactly the
same approach can be followed with cR2. When working with inversion of field data if problems occur
then it is recommended that the user runs a forward model with the measurement set to check that
computed values from this make sense. Many problems I hear about could have been avoided by
running such tests.

Finally, as R2 has a 3D equivalent R3t, cR2	also has a 3D version cR3t. Copies are available from the
author

cR2	v3.0	(April	2020)	 	 page	33	

11. Additional	codes	and	scripts	

The cR2 package contains a number of codes and scripts that may help the user in creating input files
and visualising output from cR2. If you are interested in other scripts then download the sister code R2
– a number of additional third party scripts and codes are included.
	
Meshing		

Folder Mesh_Utilities/Binley

GenGmshGeo2D.exe	
Creates a Gmsh geo (geometry file) which may be used for creating a triangular mesh. Note that the geo
file can be edited before meshing, e.g. to add topography. The geo file created is GenGmshGeo2D.geo

GmshMsh2R2.exe	
Reads the GenGmshGeo2D.geo	created (and, perhaps, edited) in Gmsh, which can be meshed, creating
a msh (mesh file) mesh.dat.		Note that the first line will contain the number of elements, which is
needed in cR2.in for defining the resistivity (starting model or forward model definition).	

Check_R2_Tmesh
Run to check the mesh.dat file that is created and fix errors, in particular node numbering of the
elements in the mesh.

Folder Mesh_Utilities/Boyd	
	
gmsh2R2msh	
This python code and executable (written by Jimmy Boyd (British Geological Survey/Lancaster
University) with convert a Gmsh msh file to an R2 (or cR2) mesh.dat file.

Folder Mesh_Utilities/Claes	

create_mesh	
A Matlab script written by Niels Claes (Wyoming University) will create an R2 (or	cR2)	mesh.dat file for
a triangular mesh.
	

ResIPy (Python interface)	

Guillaume Blanchy (Lancaster), Sina Saneiyan (Rutgers) , Jimmy Boyd (BGS/Lancaster), Paul McLachlan
(Lancaster/BGS) have developed an open source python GUI for R2 and sister codes (including cR2).
See Blanchy et al.(2020). See also https://gitlab.com/hkex/pyr2 which also includes links for
standalone executables. More information is also available at
https://www.researchgate.net/project/ResIPy-GUI-for-R2-family-codes

 	

cR2	v3.0	(April	2020)	 	 page	34	

12. Getting	started	with	ParaView	
	
The vtk files created by cR2 have been structured to work in ParaView - an open source visualisation
application that can be downloaded from https://www.paraview.org/ Users are advised to study online
tutorials on ParaView. Here are a few simple tips to help the user get going.

The fXXX_res.vtk	file contains the inverted resistivity magnitude, phase angle, log10 transformed
resistivity magnitude, log10 real conductivity, log10 imaginary conductivity and a sensitivity map. The
file also contains the finite element mesh structure.

Open a fXXX_res.vtk file in ParaView, click Apply under Properties and you will get a map of the
resistivity. Under Coloring in Properties you can select one of other variables stored, e.g.
log10resistivity.

The default Representation of the image is Surface. Change to Surface with edges to see the finite
element mesh and the resistivity image.

Axis labels and the colour legend are easily changed to suit the user.

To get an interpolated image (rather than one that shows element by element) then highlight the vtk file
in the Pipeline Browser and select the Cell Data to Point Data Filter. Then select Apply in Properties.

If you want to show an image with thresholded values based on the sensitivity map then select the Clip
icon and then Clip Type as Scalar under Properties and select Sensitivity(log10) as Scalars. Select a mid-
range value in the slider bar for Value. Under Coloring select Magnitude (ohm.m). You should now see
the thresholded region as a solid colour. If you wish to retain the full image with the thresholded area
opaque then select the f001_res.vtk image and then select Opacity under Styling as a value less than 1.

To show the electrodes, open the electrodes.vtk file and click Apply under Properties. Now select Point
Gaussian under the Representation under the Display options.

The screenshot below shows an sample from the Surface 1 example.

cR2	v3.0	(April	2020)	 	 page	35	

13. Common	User	Errors	
	
Below is a list of some common user errors that I have encountered. This may be useful for new users.

A common mistake is for a new user to go straight into trying to run an inverse solution without getting
a good feeling for the model that is being used. New (and old) users working on new problems should
first try run a forward model for a uniform resistivity. This will help sort out any problems with the
definition of the mesh, etc. It will also be useful in understanding the quality of the forward model and
help judge this against the quality of the data.

If you can, run the code from the command line. You will need to run CMD in Windows, then move to
the correct folder and then type cR2.		Doing it like this help see any errors if the program crashes
unexpectedly because of incorrect input.

In the example input files provided there are comments at the end of most lines in the form
“<< comment” . Note that these are always at the end of a line. You cannot have these appearing on
their own in a line. If you do then cR2		will try read this comment when it is expecting numerical input
and simply crash.

The mesh is based on elements and nodes. In cR2.in	Lines 3 to 9 are based on nodes, whereas Line 13 is
based on elements. It is important to understand the difference and not mix the two.

On Line 18 in cR2.in, specifying a tolerance of 1.0 means that you are happy that you have estimated
your errors correctly (Line 19). Don’t just use the a_wgt and b_wgt values in the example files – spend
time to understand the likely errors in your measurements and model.

Setting the minimum and maximum apparent resistivity (Line 19 of cR2.in) is only valid if you have a
flat surface and an infinite half space problem, otherwise the geometric factors that cR2 will compute
will be incorrect.

For a quadrilateral mesh the electrode positions are defined by their column and row positions in the
mesh (Line 25 of cR2.in). These are not the co-ordinates of the electrodes but their position in the
mesh.

In the definition of the input files, each line has been defined in terms of the type of numbers that are
required. For example, (Real, 2 Int, 2 Real) means one real number, followed by two integers, followed
by two reals. You can substitute integers for reals but not the other way round. So if the code is
expecting an integer and your line entry has 1.3, for example, then the code will crash.

Note that the data in protocol.dat should be provided in transfer resistances, NOT apparent
resistivities. Also note that the polarity should be reflected in the phase angle (see section 3). It is very
wise to check the polarity of your measurements – you can do this by computing the geometric factor
for your measurement configuration (provided topographic and non-infinite boundaries are not
significant). If you don’t know how to compute the geometric factors then you should run a forward
model with cR2		for a uniform half space and compare the computed polarities with those in your data.
For a surface electrode array your data should be the same polarity as the model, otherwise the
measurements will not be included in the inversion. For electrodes not on the surface the polarity can
change as the resistivity structure changes in the inversion.

Make sure you check that the solution has converged in inverse mode (see cR2.out). Just because a
resistivity model has been computed it does not mean that convergence has been reached. If the
solution has not converged then go through the fXXX.err	file and look at see if any particular
measurements are problematic. Also check that you are confident with the a_wgt and b_wgt error
settings you have applied (Line 19, cR2.in). A common mistake is to set these too low. A good estimate
of a_wgt is important for the magnitude inversion and b_wgt is critical for the phase angle . Normally,

cR2	v3.0	(April	2020)	 	 page	36	

you should be able to get convergence in less than 5 iterations for the magnitude and typically only one
iteration for the phase angle improvement. It is not wise to increase the maximum number of iterations
to a large number. If you don’t get convergence in 10 iterations then there is definitely some problem
with the data, the assumptions or the input files.
	

cR2	v3.0	(April	2020)	 	 page	37	

14. References	

Binley, A., 2015, Tools and Techniques: DC Electrical Methods, In: Treatise on Geophysics, 2nd Edition, G
Schubert (Ed.), Elsevier., Vol. 11, 233-259, doi:10.1016/B978-0-444-53802-4.00192-5.
(available from the author on request).

Binley, A. and A. Kemna, 2005, Electrical Methods, In: Hydrogeophysics by Rubin and Hubbard (Eds.),
129-156, Springer

Blanchy, G., S. Saneiyan, J. Boyd, P. McLachlan and A. Binley, 2020, ResIPy, an intuitive open source
software for complex geoelectrical inversion/modeling in 2D space, Computer & Geosciences, 137, doi:
10.1016/j.cageo.2020.104423.

Kemna, A., A. Binley and L. Slater, 2004, Cross-borehole IP imaging for engineering and environmental
applications, Geophysics, 69(1), 97-105.

Kemna, A., E. Räkers, and A. Binley, 1997, Application of complex resistivity tomography to field data
from a kerosene-contaminated site: Environmental and Engineering Geophysics (EEGS) European
Section, 151–154.

Mejus, L., 2014, Using multiple geophysical techniques for improved assessment of aquifer vulnerability,
PhD thesis, Lancaster University, UK.

Mwakanyamale, K., L. Slater, A. Binley and D. Ntarlagiannis, 2012, Lithologic Imaging Using Induced
Polarization: Lessons Learned from the Hanford 300 Area, Geophysics, 77, 397-409.

If	you	make	use	of	cR2	then	please	contact	the	author	(a.binley@lancaster.ac.uk)	so	that	you	can	

be	added	to	a	mailing	list	for	future	updates,	fixes,	etc.	

For	more	information,	including	example	files	contact:	

Andrew Binley
Lancaster Environment Centre

Lancaster University
Lancaster LA1 4YQ, UK

Email: a.binley@lancaster.ac.uk

