

R2
 version 4.11 (September 2023)

Andrew Binley

Lancaster University
September 2023

I

V

I V

IV

Contents
1. Recent version history .. 1

2. Computer requirements for R2 v4.11 ... 2

3. Introduction to R2 v4.11 ... 3

4. Forward and inverse modelling in R2 .. 4

4.1 Forward modelling ... 4

4.2 Inverse modelling... 5

4.3 Inverse model appraisal ... 7

5. Designing meshes ... 9

5.1 Gmsh mesh utility codes for R2... 12

6. Parameterisation ... 13

7. Input and output files .. 16

8. Details of R2.in .. 20

9. Details of protocol.dat ... 27

10. Details of mesh.dat .. 28

11. Examples ... 29

11.1 Surface electrode array 1 – getting started ... 29

11.2 Surface electrode array 2 – adding topography .. 32

11.3 Surface electrode array 3 – fixing parameter values .. 33

11.4 Surface electrode array 4 – anisotropic smoothing .. 34

11.5 Surface electrode array 5 – more complex meshing .. 34

11.6 Surface electrode array 6 – depth of investigation ... 35

11.7 Surface electrode array 7 – time-lapse (difference) inversion ... 36

11.8 Surface electrode array 8 – triangular meshing ... 38

11.9 Surface electrode array 9 – quadrilateral mesh in mesh.dat ... 40

11.10 Cross borehole array .. 40

11.11 Column model .. 42

12. Additional codes and scripts ... 44

13. Getting started with ParaView.. 46

14. Common user errors .. 48

14. References .. 50

 1

1. Recent version history
Changes to R2 from v4.10
Minor bug fixes.
Changes to R2 from v4.02
Sensitivity map output now also includes a value scaled by parameter cell area. Additions to
documentation made.
Changes to R2 from v4.01
If the starting model satisfies the data then output is generated (previously the files were left empty).
Bug fix: output of estimate of memory required corrected.
Changes to R2 from v4.0
The calculation of resolution matrix has been improved. Checks for vtk output of negative values of
resolution matrix made. Minor edits to output and documentation.
Changes to R2 from v3.3
General quadrilateral mesh input now an option. When a triangular mesh is used the mesh.dat file now
needs specification of the Dirichlet node in line 1. Bug fix: difference inversion file output now corrected.
Error checking on presence of input files. Mesh error checks when mesh is read from file mesh.dat.
Output of model roughness in main log file.
Changes to R2 from v3.2
Bug fix: geometric factor calculations for triangular meshes. Bug fix: output of electrode codes in the
_err.dat file (only has impact if electrode numbers are different to the order they are defined in R2.in.
Bug fix: incorrect step length set when convergence reached in first alpha trial.
Changes to R2 from v3.1
Bug fix: calculations with a triangular mesh when node 1 was close to (or at) an electrode (that resulted
in high errors in forward model calculations for measurements involving such an electrode).
In a difference inversion the vtk output file now contains the percentage differences. Error checks on
input of the data file (protocol.dat) are now made (to avoid incorrect electrode numbering). Output of a
vtk file containing inversion results at each iteration is now included (previously this was only output to
a .dat file). Some utility codes have been added to help with creating triangular meshes. Third party
codes and scripts have been added. Documentation has been improved by adding more illustration of
meshing and parameterisation.
Changes to R2 from v3.0
Anisotropic regularisation is now implemented for a triangular mesh. In earlier versions anisotropic
regularisation only worked for quadrilateral meshes. An example triangular mesh problem is included in
the distribution and this document. In addition, the output of co-ordinates of the mesh has changed for a
triangular mesh (the polarity of the vertical co-ordinate) to allow some consistency with quadrilateral
mesh problems and some notes are added in this document about co-ordinate conventions.
Changes to R2 from v2.7c
All main arrays are now set at run time and so there is no set limit to the size of the problem that can be
solved. Because R2 can now work with much larger problems the forward solver uses pardiso (e.g.
http://www.pardiso-project.org/) as a linear equation solver, which allows more compact array storage.
Users may find that smaller problems run a little slower than with earlier versions because of the
overheads in using this solver. R2 now also allows more control of the convergence by specifying a target
decrease in misfit at each iteration (see changes to entry of Line 18 in R2.in).
Changes to R2 from v2.7b
Option to output roughness matrix and Jacobian.
Changes to R2 from v2.7a
Bug fix for input of poly line specifying output region. Note that example files supplied for v2.7a and
earlier will not output the region properly with 2.7b – these input files have been changed with this
release. Also changed upper limits of problem size.
Changes to R2 from v2.7
Bug fix for case when parameter number set to zero.

 2

2. Computer requirements for R2 v4.11

In this release two versions have been compiled for the Windows environment. A 64bit version, R2.exe,
is provided in the package, along with the 32bit version (R2_w32.exe). The 32bit version is only
provided for continuity of R2 and its use is not recommended and it has not been tested. Linux and Mac
users should be able to run R2 with the command “wine R2.exe” (thanks to Rodolphe Cattin for this tip).

NOTE 1: R2 is provided as a standalone executable. It does not need to be installed – the executable is put
in the folder containing the input files and run from there. Output files will be created in the same folder.

NOTE 2: You will be able to run R2 by double clicking the executable. However, if the program stops
abruptly (for example, due to an error in the input file or if you are trying to run an executable compiled for
a different processor architecture) then you will not see any error message on the screen since the window
will disappear. Therefore, it is advisable to run R2 from the Command Prompt in Windows (just run CMD
from the Start Menu – you may need to move your working directory and run R2 from there).

NOTE 3: All input files should be prepared with a text editor. [I prefer to use TextPad
(https://www.textpad.com/home) because it allows much greater editing facilities although any text editor
will work]. It is important that you do not include tabs in the files. These are often inserted if you copy and
paste from Excel, for example. You should convert these tabs to spaces (TextPad will allow you to set this up
to happen automatically).

R2 has been designed so that no other commercial software is required for pre- and post-processing.
Simple structured meshes can be created directly in R2, alternatively more complex geometry can be
meshed using freely available codes, such as Gmsh (https://gmsh.info/). R2 does not produce graphical
output but results compatible with the freely available ParaView (https://www.paraview.org) are
produced. Other free codes, such as GMT (https://github.com/GenericMappingTools/gmt) can be used.
Users wishing to use a graphical user interface for meshing, modelling and plotting may be interested in
ResIPy - an open source python GUI for R2 and sister codes. See https://gitlab.com/hkex/resipy which
also includes links for standalone executables. Video tutorials for ResIPy are available at
https://www.youtube.com/c/ResIPy. See also Boyd et al.(2019) and Blanchy et al.(2020).

https://www.textpad.com/home
https://gmsh.info/
https://www.paraview.org/
https://github.com/GenericMappingTools/gmt
https://gitlab.com/hkex/resipy
https://www.youtube.com/c/ResIPy

 3

3. Introduction to R2 v4.11

R2 is a forward/inverse solution for 3D or 2D current flow in a quadrilateral or triangular mesh. The
mesh is made up of a set of elements. Parameters (for the inverse solution) are made up of one or more
elements. Electrodes are specified at node points. These are the corners of the elements. The boundary
conditions along all four boundaries of the mesh are Neumann conditions (zero flux) and therefore if you
are investigating a half space you must extend left, right and lower boundaries of the mesh to some
distance away from the area of investigation (typically 5 to 10 times the distance – see later). One of the
nodes must be set to a Dirichlet node (see later). The mesh can be made up of either quadrilateral
elements or triangular elements.

The current version does not have upper limits set for the size of the problem that can be solved.
However, it is important that the user has some appreciation of whether the problem they are trying to
solve is realistic for their given hardware. Large problems in inverse mode can be memory hungry. As
soon as the user’s RAM is used then the computer will start using virtual memory (paging to disk) which
can be very slow. To help the user asses memory needs R2 will output an estimate of the memory needs
early on in its execution. For large problems it is important that the user compares this with physical
memory (RAM) that is available.

For information on R2, along with in-depth explanation of the theory behind forward and inverse
modelling, see Binley and Slater (2020). Binley (2015) and Binley and Kemna (2005) also provide useful
summaries of the theory underpinning R2. Contact the author for a digital copy of Binley (2015).

R2 is provided for non-commercial use. Any users wishing to use R2 for commercial applications should
contact the author.

DISCLAIMER

R2 has been used for a wide variety of applications and continues to be developed. It has been
thoroughly tested, however, the user must accept all responsibility for the results and interpretation of
the code’s output. The author and Lancaster University provide no warranties to the user, expressed,
implied, or statutory, including any implied warranties of fitness for a particular purpose. In no event
will the author or Lancaster University be liable for any damages, including direct, indirect, special,
incidental, or consequential damages, arising out of anyone's use of or inability to use this code.

 4

4. Forward and inverse modelling in R2

4.1 Forward modelling

Forward modelling is used to determine transfer resistances (or apparent resistivities) for a given set of
four electrode measurements and a given distribution of resistivity. It can be carried out explicitly in R2
in forward mode, or used implicitly in R2 in inverse mode. R2 solves the governing equations using the
finite element method.

We can write a 2D form of the governing equation (with x horizontal and y vertical) and resistivity, ρ,
varying in x and z but constant in the third dimension, y, as:

 𝜕𝜕

𝜕𝜕𝜕𝜕
�1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = −𝐼𝐼𝐼𝐼(𝑥𝑥)𝐼𝐼(𝑧𝑧), (1)

however, this assumes that the current source is infinitely long in the y direction, and so of limited
practical value. To account for point electrodes we must account for 3D current flow (whilst assuming
2D variation in resistivity). To do this we can we can use the Fourier cosine transformation:

 𝑣𝑣(𝑥𝑥,𝑘𝑘𝑤𝑤, 𝑧𝑧) = 2∫ 𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑧𝑧) cos(𝑘𝑘𝑤𝑤𝑦𝑦)𝑑𝑑𝑦𝑦∞

0 , (2)

where 𝑘𝑘𝑤𝑤 is the wavenumber. This allows us to form a 2D equation in terms of the transformed variable,
v as:

 𝜕𝜕
𝜕𝜕𝜕𝜕
�1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�+ 𝜕𝜕

𝜕𝜕𝜕𝜕
�1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜕𝜕𝑘𝑘𝑤𝑤2

𝜌𝜌
= −𝐼𝐼𝐼𝐼(𝑥𝑥)𝐼𝐼(𝑧𝑧). (3)

Equation 3 can then be solved for v, for a given value of 𝑘𝑘𝑤𝑤, in a 2D manner. To determine the voltage V,
the inverse Fourier transform is needed. This can be stated as:

 𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 1

𝜋𝜋 ∫ 𝑣𝑣(𝑥𝑥,𝑘𝑘𝑤𝑤, 𝑧𝑧) cos(𝑘𝑘𝑤𝑤𝑦𝑦)𝑑𝑑𝑦𝑦∞
0 , (4)

which can be approximated with numerical integration. In R2 this is done with a combination of
Gaussian quadrature and Laguerre integration. To determine the voltage at the potential electrodes we,
therefore, solve the 2D problem in equation 3 for a given number of values of 𝑘𝑘𝑤𝑤 and then approximate V
through equation 4.

As stated earlier, R2, solved the forward problem with the finite element method. With this method, the
region of interest is discretised into a mesh of either 3 node triangular or 4 node quadrilateral elements
and voltages computed at the node points of each element. Quadrilateral elements make mesh building
easy but are less efficient computationally than triangular elements. Section 5 explains how meshes can
be constructed.

As the finite element method approximates the governing equation we need to ensure that we do not
create significant numerical discretisation errors – close to the electrodes the elements need to be finely
discretised to ensure that a suitable accuracy is achieved. We can improve the accuracy of the forward
modelling with singularity removal, this effectively decouples the problem into a primary and secondary
voltage (see Lowry et al., 1989) using a known analytical solution for the primary voltages. R2 allows
singularity removal to be applied (see section on R2.in input for details) but the user must ensure that
the region is an infinite half space with a flat surface, otherwise the analytical solution for the primary
voltage will be incorrect.

 5

4.2 Inverse modelling

In R2 an iterative process solves the following equations:

 �JTWd

TWdJ + 𝛼𝛼𝐑𝐑�∆𝐦𝐦 = JTWd
T�𝐝𝐝 − 𝐟𝐟(𝐦𝐦𝑖𝑖)� − 𝛼𝛼𝐑𝐑𝐦𝐦 (5)

 𝐦𝐦i+1 = 𝐦𝐦i + ∆𝐦𝐦, (6)

where:
𝐉𝐉 is the Jacobian, such that 𝐽𝐽𝑖𝑖,𝑗𝑗 = 𝜕𝜕𝑑𝑑𝑖𝑖/𝜕𝜕𝑚𝑚𝑗𝑗 ,
𝐝𝐝 is the data vector,
𝐦𝐦𝒊𝒊 is the parameter vector at iteration i,
𝐖𝐖𝐝𝐝 is the data weight matrix, assumed to be diagonal, with diagonal values 𝑊𝑊𝑑𝑑 𝑖𝑖,𝑖𝑖 = 1/𝜖𝜖𝑖𝑖 , where 𝜖𝜖𝑖𝑖 is the
standard deviation of measurement i,
𝛼𝛼 is the regularisation (or smoothing) scalar,
𝐑𝐑 is the roughness matrix, which describes the connectivity of parameter blocks,
∆𝐦𝐦 is update in parameter values at each iteration,
𝐟𝐟(𝐦𝐦) is the forward model for parameters 𝐦𝐦.

In R2 the parameters are the logarithm of the electrical conductivity in each element (or group of
elements that form a parameter block). The data are either transfer resistances or, if log data selected
(see detailed input instructions later for R2.in) then the input data are transformed to logarithm of
transfer resistances. Note that this does not require only positive data, however, the forward model
computed value should be the same polarity, otherwise the difference is not defined. If R2 encounters a
difference in polarity between modelled and measured values during an inversion then these
measurements are ignored.

Equations 5 and 6 are solved repeatedly until satisfactory convergence is achieved. In R2 this is defined
by the data misfit reaching a required tolerance. If we express data misfit as a root mean square error,
i.e.

 RMS = �1
𝑁𝑁
∑�𝑑𝑑𝑖𝑖−𝑓𝑓𝑖𝑖(𝒎𝒎)

𝜖𝜖𝑖𝑖
�
2

, (7)

where N is the number of measurements, then the target tolerance should be 1 (following a chi-squared
distribution).

Equations 5 and 6 result from the minimisation of an objective function composed of a data misfit and a
model misfit. The former describes the mismatch between the observations (d) and the forward model
(f(m)) and can be expressed as:

 Ψ𝑑𝑑 = (𝐝𝐝 − 𝐟𝐟(𝐦𝐦))𝑇𝑇𝐖𝐖d

𝑇𝑇𝐖𝐖d(𝐝𝐝 − 𝐟𝐟(𝐦𝐦)). (8)

The model misfit describes the roughness of the variation in model parameter and can be expressed as:

 Ψ𝑚𝑚 = 𝐦𝐦𝑇𝑇𝐑𝐑𝐦𝐦. (9)

In an Occam’s inversion we seek to minimise:

 Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Ψ𝑑𝑑 + αΨ𝑚𝑚, (10)

for the largest α, i.e. we wish to obtain the smoothest distribution of resistivity that is consistent with
the observed data. R2 achieves this through an iterative process in which equation 5 is solved and
equation 6 applied. At each iteration α can change, keeping it as large as possible. R2 does a line search
for α at each Gauss Newton iteration (using up to 10 values of α). R2 computes a reasonable starting
value for α at the beginning of the process by assessing an equal balance of the terms in the brackets of
left hand side of equation 5. This often results in satisfactory convergence within a few iterations.

 6

However, this can lead to unsmooth models as the inversion process is attempting to find a solution too
quickly. Sometimes it can be beneficial to slow the process. To do this the user can select the maximum
change in misfit during each iteration (using the target_decrease parameter – see R2.in input). The user
is recommended to experiment with either solution strategies. Note also that R2 allows the
regularisation scalar, 𝛼𝛼, to be anisotropic in order to enhance smoothing in one direction.

During each iteration R2 will output values of Ψ𝑑𝑑 (reported as a root mean square (RMS) error) and Ψ𝑚𝑚
(reported as “roughness”).

R2 allows different forms of the roughness matrix R in equation 5. This is achieved with the
inverse_type parameter in R2.in (see section on R2.in input). Normally inverse_type is set to 1, which
leads to a model misfit in equation 5 that is equivalent to the sum of squared differences between each
parameter and adjacent parameter values (see Binley and Slater (2020) for more details). If
inverse_type is set to 0 then a pseudo Marquardt inversion is carried out using a diagonal form of R, i.e.
there is only damping but no spatial regularisation. This is unlikely to lead to a satisfactory convergence
as is only included to maintain consistency with historic forms of R2. If inverse_type is set to 2 then
greater smoothing is applied using the structure of roughness matrix R. Again this is only included for
consistency with historic forms of R2. If inverse_type is set to 3 then a qualitative solution is computed.
This is based on the weighted back projection method of Kotre (1994). It has shown some value for
circular electrode arrays but it is unlikely to be of general value and should be avoided (the back
projection approach was developed to allow rapid computation of an image but nowadays a normal 2D
inversion can be achieved quickly). If inverse_type is set to 4 then the regularisation can be set so that
some of the smoothing is switched off between adjacent parameter cells (see section on R2.in input).
Note also, that some parameter cells can be forced to remain unchanged from the initial model specified
by the user.

In addition to setting inverse_type, the user can control other aspects of the regularisation with the
parameter reg_mode in R2.in (see section on R2.in input). The approach described above is achieved by
setting reg_mode=0 in R2.in.

In some cases we may wish to obtain a model that is smooth in terms of the difference between model
parameter and some reference model. Such a situation is useful for time-lapse inversion (see later). In
this case we could express a model misfit as:

 Ψ𝑚𝑚 = (𝐦𝐦−𝐦𝐦0)𝑇𝑇𝐑𝐑(𝐦𝐦−𝐦𝐦0), (11)

where 𝐦𝐦0is the reference parameter model.

An alternative regularisation (used in R2 with reg_mode=1) is to use a model misfit as:

 Ψ𝑚𝑚 = (𝐦𝐦−𝐦𝐦0)𝑇𝑇𝐑𝐑(𝐦𝐦−𝐦𝐦0) + α𝑠𝑠(𝐦𝐦−𝐦𝐦0)𝑇𝑇(𝐦𝐦−𝐦𝐦0), (12)

where α𝑠𝑠 is a weighting factor: a high value forces consistency with the reference model; a low value
forces smoothing of the difference. In R2 this is referred to as a background regularisation.

Alternatively we can consider the difference inversion approach of LaBrecque and Yang (2001), which
has proved to be useful for time-lapse data. For this approach equation 5 needs to be modified to:

 �JTWd

TWdJ + 𝛼𝛼𝐑𝐑�∆𝐦𝐦 = JTWd
T�𝐝𝐝 − 𝐟𝐟(𝐦𝐦𝑖𝑖)� − 𝛼𝛼𝐑𝐑(𝐦𝐦−𝐦𝐦𝟎𝟎). (13)

with the term:

 �𝐝𝐝 − 𝐟𝐟(𝐦𝐦𝑖𝑖)� (14)

defined as:

 7

 (𝐝𝐝 − 𝐝𝐝0) − �𝐟𝐟(𝐦𝐦𝑖𝑖) − 𝐟𝐟(𝐦𝐦0)�. (15)

To implement this the user should set reg_mode=2 in R2.in (see section on R2.in input) and provide
two columns of data in protocol.dat: the first column is 𝐝𝐝0, the second column is 𝐝𝐝. R2 uses these to
create a new dataset:

 �𝐝𝐝 − 𝐝𝐝0 + 𝐟𝐟(𝐦𝐦0)�, (16)

where 𝐟𝐟(𝐦𝐦0) is the forward model with the reference dataset 𝐝𝐝0.

4.3 Inverse model appraisal

R2 provides two direct ways to assess the final model from an inversion. One approach for model
appraisal, which is widely appreciated in general inverse theory, is the model resolution matrix, 𝑹𝑹𝒎𝒎,
which describes the mapping of data and model space, and is defined by:

 𝐦𝐦 = 𝐑𝐑𝐦𝐦𝐦𝐦true, (17)

where 𝐦𝐦 is the inverted parameter set and 𝐦𝐦true is the (unknown) true parameter set. Clearly, ideally
𝐑𝐑𝐦𝐦 = 𝐈𝐈, any deviation reveals the lack of sensitivity of the parameter values to the measured data,
manifested by regularisation.

From the formulation in equation 17, 𝑹𝑹𝒎𝒎 can be approximated by the solution of:

 �𝐉𝐉T𝐖𝐖d

T𝐖𝐖d𝐉𝐉+ α𝐑𝐑�𝐑𝐑𝐦𝐦 = 𝐉𝐉T𝐖𝐖d
T𝐖𝐖d𝐉𝐉, (18)

where the Jacobian, 𝐉𝐉, has been computed using the final (inverted) parameter set and the regularization
scalar, α, is the value at the end of the inversion. The determination of 𝐑𝐑𝐦𝐦 using equation 18 requires
significant computational effort: the formation and solution of M sets of equations, each of size M×M,
where M is the number of parameters. The simplest way to use the resolution matrix is to display the
diagonal value for each parameter, which should be unity for perfectly resolved parameters – this is what
is output if res_matrix = 2 is specified in R2.in (see R2.in input section).

An alternative (and much easier computationally) way of assessing the inverse model is to use a
sensitivity map. This is done by computing the diagonal of:

 𝐒𝐒 = 𝐉𝐉T𝐖𝐖d

T𝐖𝐖d𝐉𝐉, (19)

i.e. for each parameter cell, j:
 S𝑗𝑗 = ∑ �𝐽𝐽𝑖𝑖,𝑗𝑗𝑊𝑊𝑑𝑑 𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1 , (20)

where N is the number of measurements.

To do this res_matrix = 1 is specified in R2.in.

R2 will also output a scaled form of the value in equation 19 using the area of each parameter cell. This
can be particularly useful if your mesh has significant variation in element sizes within the region of
interest.

 S𝑠𝑠 𝑗𝑗 = ∑ �𝐽𝐽𝑖𝑖,𝑗𝑗𝑊𝑊𝑑𝑑 𝑖𝑖/𝐴𝐴𝑗𝑗�

2𝑁𝑁
𝑖𝑖=1 , (21)

where 𝐴𝐴𝑗𝑗 is the area of parameter cell j.

 8

In addition to these, other approaches are available for model appraisal, e.g. the depth of investigation
approach of Oldenburg and Li (1999), the use of which is illustrated in one of the examples provided.

 9

5. Designing meshes

R2 uses a mesh of finite elements to compute the forward model (in both forward and inverse mode). As
stated earlier, the mesh is based on a quadrilateral (structured or unstructured) or triangular
(unstructured) mesh of finite elements. Each element is defined by node points on its perimeter (see
Figure 5.1). R2 computes the voltage at each node point given a dipole current source applied at a pair of
nodes. Therefore, the minimum requirement of the mesh is that the electrodes must be sited at node
points. The accuracy of the computed voltage field is strongly dependent on the discretisation of the
nodes: nodes should be closely spaced near electrode sites as voltage gradients will be high.

Figure 5.1: Example finite element showing ordering of nodes and elements (in circles) for a structured

quadrilateral mesh. For unstructured meshes the user defines the element and node numbering.

The mesh should clearly cover the survey area laterally and the expected depth of investigation,
however, given that injected current will transfer further horizontally and vertically, the mesh should
extend sufficiently in order to account for this (mimicking infinite boundaries). There is no need to
retain a fine discretisation in these ‘infinite’ boundary regions: it is good practice to let the elements
gradually increase in size laterally and vertically outside the region of investigation. Figure 5.2 illustrates
the zoning of discretisation. Note that this example is for a surface electrode array. For others, e.g. cross-
borehole, similar concepts are applied.

Figure 5.2: Extending the finite element mesh to account for ‘infinite’ boundaries. DOI is the depth of
investigation. Zone A is the region of interest; elements should be finely discretised especially near the

electrodes. Zone B has the same discretisation as A and is included to ensure good accuracy of the
forward calculations; this zone typically extends two or three time the electrode spacing. Zone C

typically extends ~5L where L is the length of the longest current dipole. Discretisation should gradually
get coarser in Zone C, moving away from the region of investigation.

1

2

3

71

77

1

2

6

55

60

7

Electrode array

~5L

~5L

DOI

B

A

C

 10

A basic (structured) quadrilateral mesh in R2 is defined by a grid of numnp_z rows and numnp_x
columns of nodes. This type of mesh can be set in three different ways (Figure 5.3). The simplest type is
a rectangular grid (Figure 5.3a). In R2.in we define this as mesh_type = 4 (see later). In this case, the
elevation of all nodes in a given row is constant. The mesh is defined by the x co-ordinates of each
column, the z co-ordinates of the nodes in the top row (i.e. the topography) and the depth of each row
relative to the top row. If the topography varies across the survey area then a mesh shown in Figure 5.3b
results. Again this is mesh_type = 4. A more complex mesh structure (see Figure 5.3c) can also be created.
In R2.in we define this as mesh_type = 5. In this case the x co-ordinates are still fixed for each column but
the elevation of all nodes in each column must be input. In comparison to mesh_type = 5 more input
defining the geometry is needed but the co-ordinates of every node is not needed.

The basic (structured) meshes described above are generated by R2 following input of geometrical
parameters in R2.in. A more sophisticated (unstructured) quadrilateral mesh (e.g. Figure 5.4) can also
be used in R2 but this must be read from a separate file mesh.dat (mesh_type = 6). The file will contain
the co-ordinates of all nodes, along with the element definitions (i.e. the four node numbers for each
element). The specific format of mesh.dat is defined later.

For more complex geometry R2 allows the use of a triangular mesh. Again, the co-ordinates for all nodes
must be defined, along with the element definitions (i.e. the three node numbers for each element). In
R2.in we define this as mesh_type = 3 and the mesh is read from the file mesh.dat.

Figure 5.3: Basic (structured) quadrilateral mesh types. (a) and (b): mesh_type = 4; (c): mesh_type = 5.

(a)

(b)

(c)

 11

Figure 5.4: Unstructured quadrilateral mesh example (mesh_type = 6).

Figure 5.5: Triangular mesh example (mesh_type = 3).

If full flexibility in mapping the geometry of the problem is required then a triangular mesh is preferred.
In some instances the use of a pre-defined quadrilateral mesh (mesh_type = 6) may be effective. It
doesn’t need to be unstructured. Figure 5.6 shows an example where rectangular geometry is used but
since the mesh cannot be defined as one set of rows and columns, the mesh must be predefined and read
from mesh.dat.

Figure 5.6: Structured quadrilateral mesh example (mesh_type = 6).

Triangular meshes not only allow full flexibility in defining geometry but also result in more
computationally efficient meshes since the extremities of the mesh can be made to have coarser
discretisation (see Figure 5.7). If you are working with a triangular mesh then you must create the mesh
and store details of the geometry of the mesh in a file mesh.dat. There are a number of good meshing
tools available. Gmsh (see http://www. gmsh.info) is a powerful finite element mesh generator with a
large user base with video tutorials available online. Alternatively, software for general finite element
analysis (e.g. COMSOL) contain mesh generators, as do software for specific applications (e.g.
groundwater code environments like GMS).

A key constraint of the structured meshes (mesh_type = 4 or 5) is that defining the geometry of
parameter cells in an inverse solution is constrained (see section 5). If the mesh is prepared in mesh.dat
(mesh_type = 3 or 6) the user has full control of parameter discretisation and zoning (see later).

 12

5.1 Gmsh mesh utility codes for R2

The R2 download package contains some simple codes for working with Gmsh. These are located in the
Mesh_utilities/Binley folder. GenGmshGeo2D creates a geometry file for Gmsh. This can then be
loaded in Gmsh and a 2D mesh easily created. The mesh in Gmsh is saved as a file
GenGmshGeo2D.msh which can be transformed to the mesh.dat format for R2 using the partner code
GmshMsh2R2. Note that Gmsh v3.0.6 was used in generating these scripts. More recent versions may
not be compatible.

An important thing to note with mesh generation is that all finite elements should have node numbers in
a counter-clockwise direction. I have noticed that Gmsh can produce mesh output with element nodes
ordered in a clockwise direction. R2 now includes a check on this and will fix ordering errors. R2 will
also check if duplicate nodes exist in the mesh (more than one node with the same coordinates). If these
are found R2 will report them and terminate – the user must then rectify the errors in the mesh file.

Figure 5.7: Example triangular mesh with variable discretisation.

Niels Claes (University of Wyoming) has provided a Matlab script (see folder Mesh_utilities/Claes) that
will create a mesh file using Gmsh.

Jimmy Boyd (British Geological Survey/ Lancaster University) has written a python script to convert
Gmsh msh files to mesh.dat format for R2. See Mesh_utilities/Boyd

Additionally, the graphical software ResIPy (https://gitlab.com/hkex/resipy) allows mesh generation
within its interface of quadrilateral and triangular mesh.

Again, note that these scripts have been produced with specific versions of Gmsh and may not be
compatible with more recent versions. Also note that the author has not tested these third party scripts.

https://gitlab.com/hkex/resipy

 13

6. Parameterisation

For a forward model calculation the resistivity for each element must be defined. For an inverse solution
the starting resistivity model must be defined. This is normally a uniform model. In inverse mode the
discretisation of parameters must be set. The simplest way to do this is to set each finite element as a
parameter. In some cases a more complex parameterisation is required. In a structured quadrilateral
mesh we can define ‘patch’ sizes for parameters. A patch is a group of elements, which is illustrated in
Figure 6.1. The advantage of such patching of elements is the reduced computational time, since the
number of parameters is reduced.

In some instances we may wish to fix the resistivity in part of the mesh, i.e. the parameters may only
cover a subset of the finite element mesh (see, for example, Figure 6.2). R2 allows this type of
parameterisation by stating where the patching starts and ends in both x and y direction.

Greater control of parameterisation is allowed when a mesh is prepared a priori, for either a triangular
mesh or a quadrilateral mesh (e.g. Figure 6.3) by defining a parameter number for each element in
mesh.dat. Note that if a parameter number 0 is assigned for an element then the inverse solution fixes
the resistivity of this element to the starting value.

Figure 6.1: Defining parameter boundaries in a structured mesh. The grey lines show the finite element
mesh, the black lines show the parameter zones. (a) Each element is a parameter. (b) Each parameter is

a 2 x 2 patch of elements. (c) Each parameter is a 3 x 1 patch of elements.

(a)

(b)

(c)

 14

Figure 6.2: Parameterisation of a subset of the structured finite element mesh. The grey lines show the
finite element mesh, the black lines show the parameter zones.

Figure 6.3: Parameterisation of an unstructured mesh defined in mesh.dat. The grey lines show the finite

element mesh, the black lines show the parameter boundaries.

Further control of parameterisation is achieved through ‘zoning’ of parameters. In R2 a zone is defined
as a congruent collection of parameters (see Figure 6.4). Smoothing (in the inverse solution) does not
occur across zones. This can be useful if a priori information allows the user to define sharp contrasts
(e.g. at a water table boundary).

Figure 6.4: Zoning of parameterisation. The two colours represent different parameter zones in the
mesh.

Again, full flexibility is possible with an unstructured mesh (see Figure 6.5). For each element the
parameter and zone is defined in the mesh.dat file.

 15

Figure 6.5: Zoning of parameterisation in an unstructured triangular mesh. The three colours represent
different parameter zones.

In summary, when a mesh is defined in mesh.dat, each element is assigned (i) a parameter number
(which is zero if it should remain fixed throughout the inversion); (ii) a zone number. For most cases
the parameter number of each element is the element number and the zone is 1.

 16

7. Input and output files

The input and output files used by R2 are shown schematically below, and described in detail later.

 17

R2 requires at least two input files: R2.in and protocol.dat. If a pre-defined mesh is used then an
additional input file – mesh.dat – is required. R2.in contains information on the geometry of the
problem to be solved. protocol.dat contains the four electrode configuration (and measurement for
inverse mode). In inverse mode you can repeat datasets in protocol.dat.

R2 will output a number of files:

o R2.out which will contain main log of execution.

o electrodes.dat contains the coordinates of the electrodes.

If the problem to be run is a forward model then R2 will output:

o R2_forward.dat which will contain the forward model for the electrode configuration in
protocol.dat. The format of R2_forward.dat is the same as protocol.dat but with 2 extra
columns: the first contains the calculated resistances and the second contains the calculated
apparent resistivities. Note that the apparent resistivities are computed assuming infinite
boundaries and a flat topography at z=0. If these do not apply then the computed geometric
factors will be incorrect, and consequently the apparent resistivities will be incorrect. If R2
computes the absolute value of the geometric factor to be less than 1e-10 then the apparent
resistivity that is output is assigned to a value of -100000.00000 in the output file. This does not
necessarily mean that the computed transfer resistances are poorly estimated – more likely that
the assumptions of infinite boundaries and a flat topography at z=0 is not applicable.

o forward_model.dat which will contain the resistivity distribution for your forward model (i.e.

what you specified in the input for R2). Note that the format of these will be the same as
described below for inverse mode.

o forward_model.vtk as above but vtk format (allowing plotting in ParaView, for example).

If the problem to be run is an inverse model then R2 will output:

o f001_res.dat which will contain the resistivity result of the inverse solution. f001_res.dat will
contain four columns: x, z, resis, log10(resis), where x, z are coordinates at centroid of each
element and resis is the resistivity in that element and log10(resis) is log10 of the resistivity value.
The format is setup to work directly with contouring programs like Surfer.

o f001_err.dat will contain nine columns. The first four columns contain the electrode numbers. In

the fifth column is the normalised data misfit, the next column contains the observed data
recorded as an apparent resistivity, the next column contains the equivalent apparent
resistivities for the computed model, the next column shows the original data weight (i.e. data
standard deviation in same units as data), the next column is the final data weight, the last
columns shows a "1" if any weights have been changed during the inversion, otherwise a "0" will
appear. NOTE: the output format of f001_err.dat changed in R2 v3.2.

o if you select resolution matrix calculation then f001_rad.dat will contain the diagonal of the

resolution matrix for all elements (see equation 18). A value close to 1 indicates that the
parameter for that element can be resolved perfectly, a value close to 0 indicates that the
parameter cannot be resolved at all. The format is the same as f001_res.dat.

o if you select sensitivity map calculation then f001_sen.dat which will contain the diagonal of the

matrix [JT WT W J] (see equation 20) which gives an idea of the mesh sensitivity coverage. You
will get a value for all elements. High values indicate high sensitivity to data, low values indicate
poor sensitivity. Plot on a log scale. The format is the same as f001_res.dat. In R2 v4.10 (and
subsequent versions) an additional column includes the logarithm of the sensitivity map scaled
by the area of the parameter cell (equation 21).

 18

o if you select sensitivity map calculation and output of the Jacobian then three other files will be

output: f001_J.dat (the Jacobian); f001_R.dat (the roughness matrix); f001_Rindex.dat (the
mapping of the roughness matrix, as the latter is stored in compressed form). All three files will
have two integers in line 1. These are the array sizes. Note that the first subscript varies slowest,
so if line 1 is “5 10” then an array x of size (5,10) is stored as: x(1,1), x(1,2), … , x(1,5), x(2,1),
x(2,2), …. ,x(5,10). The Jacobian is of size number of measurements x number of parameters.
The roughness matrix is stored as number of parameters x N, where N will be either 5 or 13
depending on the roughness scheme used. The file f001_Rindex.dat shows the mapping of the
compressed form of the roughness matrix in f001_R.dat, e.g. if line 2 (i.e. the line with the first
row of the roughness matrix, given that the first line of the file contains the size of the array) of
f001_Rindex.dat is “1 2 13 0 0” then in line 2 of f001_R.dat the roughness matrix entries
R(1,1), R(1,2), R(1,13) are stored. Note that the zeros in f001_Rindex.dat mean than no entry
exists because this parameter (parameter 1) is only connected to two other parameters
(parameters 2 and 13).

o f001_res.vtk will contain resistivity, log10 resistivity, log10 sensitivity (if selected) , log10 scaled

sensitivity (if selected) and log10 resolution (if selected) in vtk format (allowing plotting in
ParaView, for example).

o If you have more than one dataset in protocol.dat (see later) then the files f001_res.dat,

f002_res.dat, f003_res.dat, etc will be created. Similarly, a set of _err.dat, _rad.dat and/or
_sen.dat files will be output.

o The output f001_res.dat is made at convergence, however, sometimes it is useful to look at the

resistivity image at various stages in the iterative process. For all iterations prior to the final
iteration a file f001.XXX_res.dat will be output, where XXX is 001, 002, 003, etc for the first,
second, third, etc iterations. The format of this file is the same as f001_res.dat. If multiple
datasets appear in protocol.dat then corresponding output files will be created. For example,
f003.005_res.dat will be the fifth iteration of the inversion of the third dataset in protocol.dat.

o f001.XXX_res.vtk will be output at each iteration and contain the resistivity model in vtk format
at iteration XXX (001, 002, etc).

o If a difference inversion is run (reg_mode =2 in line 21 of R2.in) then an additional file will be
created for each dataset. f001_diffres.dat will contain three columns: x, z, diffresis, where x,z are
coordinates at centroid of each element and diffresis is the percentage change in resistivity from
the baseline model. The format is setup to work directly with Surfer.

In addition R2 will output:

o electrodes.dat , which contains the co-ordinates of the electrodes. The values are in three
columns: x,z,y (where y is a dummy value – set to 0.0).

o electrodes.vtk contains the co-ordinates of the electrodes in vtk format. The values are in three

columns: x,z,y (the latter being set to zero). Use this file if you are working with Paraview to
look at the resistivity images. Once you have opened the electrodes.vtk file in ParaView you
select “apply” then select “Representation” as “Point Gaussian” and change the radius of the
symbols.

NOTE: If R2 fails to converge in inverse mode, all output files except the sensitivity map/resolution
matrix will still be output in order to allow the user to assess the source of the problem (the fXXX.err file
is useful for this) but the user should check the R2.out file to ensure convergence is achieved before
using any computed resistivity models.

 19

Some comments on co-ordinate sign convention
When a quadrilateral mesh is created the user specifies the horizontal and vertical co-ordinates of the
rows and columns forming the mesh. The convention here (see line 9 in R2.in) is for the vertical co-
ordinates to be specified as depth (not elevation). When these are output in a .dat file (e.g.
forward_model.dat, for a forward model, or f001.dat, for an inversion) then the vertical co-ordinate
sign is changed. This is so that programs like Surfer will show the section properly. The same switching
of sign is changed in the vtk output (e.g. forward_model.vtk and f001.vtk). The electrode co-ordinates
(output in electrodes.dat and electrodes.vtk) will also have a switched sign for the vertical co-
ordinates.

When defining a mesh in mesh.dat meshes should be created with the vertical co-ordinate representing
elevation, not depth. And so when such a mesh is used, the sign change is not made in any of the output
files listed above.

 20

8. Details of R2.in

Line1: (Char*80) header

where header is a title of up to 80 characters

Line 2: (2 Int, Real, 2 Int) job_type, mesh_type, flux_type, singular_type, res_matrix

where job_type is 0 for forward solution only or 1 for inverse solution; mesh_type is 3 for
triangular mesh (see Figure 5.5), 4 for a regular quadrilateral mesh, 5 for a more generalised
structured quadrilateral mesh (see Figure 5.3c), 6 for a general quadrilateral mesh (see Figure 5.4);
flux_type is 2.0 for 2D current flow (i.e. line electrodes, which are infinitely long orthogonal to the
section) or 3.0 (usual mode) for fully 3D current flow (i.e. point electrodes); singular_type is 1 if
singularity removal (see Lowry et al., 1989) is to be applied (otherwise 0). Note that singularity
removal can only be applied is (a) the boundaries are infinite and (b) the z=0 plane defines the
upper boundary; (c) the upper boundary is flat (if any of these conditions do not apply then
singularity removal cannot be used); res_matrix is 1 if a 'sensitivity' matrix is required for the
converged solution. This matrix is not the Jacobian but is the diagonal of [JT WT W J] which gives an
idea of the mesh sensitivity (see equation 20). One value is stored for each finite element in the
mesh. High values indicate high sensitivity, low values indicate poor sensitivity. Plot on a log scale.
Set res_matrix to 2 if the true resolution matrix is computed for a converged solution and the
diagonal is stored (see equation 18), note that this calculation is more time consuming than the
‘sensitivity matrix’ option. Set res_matrix to 3 if the sensitivity map is required and an output of the
Jacobian matrix and roughness matrix. If neither sensitivity map or resolution matrix is required
then set res_matrix to 0

If mesh_type is 3 or 6 then the file mesh.dat must be supplied which contains the mesh details including
node coordinates and element indices (see details later).

If (mesh_type = 4) then a regular quadrilateral mesh is to be used and the following are read:

Line 3: (2 Int) numnp_x, numnp_z

where numnp_x is number of nodes in the x direction (horizontal) and numnp_z is the
number of nodes in the z (vertical) direction

 Line 4: (numnp_x Real) xx

where xx is an array containing x coordinates of each of numnp_x node columns

Line 5: (numnp_x Real) topog

where topog is an array containing elevations of each of numnp_x node columns. If the
topography is flat then set topog to zero for all values.

 Line 6: (numnp_y Real) zz

where zz is an array containing the depths of each of numnp_z node rows relative to the
topog array. Set zz(1) to zero and the other values to a positive number (i.e. zz represents
depth, not topography).

Else if (mesh_type = 5) then a more generalised structured quadrilateral mesh is to be used and the
following are read:

Line 7: (2 Int) numnp_x, numnp_z

 21

where numnp_x is number of nodes in the x direction (horizontal) and numnp_z is the
number of nodes in the z (vertical) direction

 Line 8: (numnp_x Real) xx

where xx is an array containing x co-ordinates of each of numnp_x node columns

 Line 9: (numnp_y Real) zz

where zz is an array containing elevations (not depths) of each of numnp_z node rows for
column 1 in the x direction. For each column of nodes zz(1) is the topography.

 Repeat Line 9 for all numnnp_x columns.

End if

Note: It is wise to add a carriage returns to break up a long list of input values (in Line 4, 5, 6, 8 and 9, for
example). Don’t write more than 20 numbers on each line as the compiler may not like it.

If (mesh_type = 3) then read the following

Line 10: (Real) scale

where scale is a scaling factor for the mesh co-ordinates. This is usually 1.0 but if a standardised
mesh is used, say for a unit circle, then this scaling factor is useful to adjust the mesh for a specific
problem. Set scale=1 if you do not wish to change the coordinates of the mesh defined in
mesh.dat.

End if

Line 11: (Int) num_regions

where num_regions is number of resistivity regions that will be specified either as starting condition for
inverse solution or actual model for forward solution. The term “region” has no significance in the
inversion – it is just a means of inputting a non-uniform resistivity as a starting model for inversion or for
forward calculation.

If (num_regions = 0) then read the following

Line 12: (15*Char) file_name

where file_name is the name of the file containing the resistivitities from a previous inversion
(the _res.dat file that had been produced). Note that the file_name must be no more than 15
characters and there should be no spaces before the file name and no characters in the line after
the file name.

Else

Line 13: (2 Int, Real) elem_1, elem_2, value

where the resistivity value will be assigned for all elements from elem_1 to elem_2 (inclusive).
Note that for a quadrilateral mesh the elements are numbered down columns first (top to
bottom) then along rows (left to right).

 Repeat Line 13 for all num_regions

 22

End if

NOTE: you must assign all elements a starting value. The number of elements in the mesh is (numnp_x-1) x
(numnp_y-1) for a structured quadrilateral mesh. All these elements must be assigned a resistivity. Note
also that if you assign an element a value, it will overwrite any previous assignment.

If (job_type = 1. i.e. an inverse solution) then read the following

If (mesh_type = 4 or 5) then read the following

Line 14: (2 Int) patch_size_x, patch_size_z

where patch_size_x and patch_size_z are the parameter block sizes in the x and z
direction, respectively. We differentiate between parameter size and element size to
allow faster computation. The larger the patch size the few parameters and the faster the
inversion, however, if we increase it too much we will reduce the flexibility to create
variation of resistivity. If computational time is not a problem then use a patch size of 1
for x and z. Note that the number of elements in the x direction must be perfectly divisible
by patch_size_x and the number of elements in the z direction must be perfectly divisible
by patch_size_z otherwise set them both to zero. See examples in Figure 6.1. For Figure
6.1a patch_size_x =1 and patch_size_z = 1. For Figure 6.1b patch_size_x =2 and
patch_size_z = 2. For Figure 6.1c patch_size_x =1 and patch_size_z = 3.

If (patch_size_x = 0) and (patch_size_z = 0) then read the following

Line 15: (2 Int) num_param_x, num_param_z

where num_param_x and num_param_z are the number of parameter blocks in
the x and z directions

Line 16: (1+num_param_x Int) npxstart, npx(i), i=1,num_param_x

where npxstart is the column number in the mesh where the parameters start;
npx specifies the number of elements in each parameter block in the x direction

Line 17: (1+num_param_y Int) npzstart, npz(i), i=1,num_param_z

where npzstart is the row number in the mesh where the parameters start; npz
specifies the number of elements in each parameter block in the z direction

See example in Figure 6.2 (copied below). For this example we would set
num_param_x = 12 and num_param_z = 9. Then we would set Line 16 as 3,
2,1,1,1,1,1,1,1,1,1,1,2 and Line 17 as 1, 1,1,1,1,1,1,1,1,2.

End if

 23

 End if

NOTE: the following line input is different to v2.7c and older versions of R2

Line 18: (Int, Real) inverse_type, target_decrease

where inverse_type is 0 for pseudo-Marquardt solution or 1 for regularised solution with linear
filter (usual mode) or 2 for regularised type with quadratic filter or 3 for qualitative solution or 4
for blocked linear regularised type (see also line 24). Note that the blocking defined here is only
for a quadrilateral mesh – for blocking within a triangular mesh see the details for preparing
mesh.dat later. target_decrease is a real number which allows the user to specify the relative
reduction of misfit in each iteration. A value of 0.25 will mean that R2 will aim to drop the misfit
by 25% (and no more) of the value at the start of the iteration. This allows a slower progression
of the inversion, which can often result in a better convergence. If you set target_decrease to 0.0
then R2 will try to achieve the maximum reduction in misfit in the iteration.

 if (inverse_type = 3) then

Line 19: (Int) qual_ratio

where qual_ratio is 0 for qualitative comparison with forward solution, i.e. only when one
observed data set is available, or qual_ratio is 1 if the observed data in protocol.dat
contains a ratio of two datasets. This option is a legacy feature of R2 and is not normally
adopted.

Line 20: (2 Real) rho_min, rho_max

where rho_min and rho_max are the minimum and maximum observed apparent
resistivity to be used. rho_min can be negative. Note that if you are computing on an
enclosed region (i.e. not an infinite half space), or if the topography is not flat and set to
zero, then the apparent resistivities will not be valid and so extreme values should be
used in Line 20, e.g. -1.0e10, 1.0e10

 Else

NOTE: the following line input is different to v2.4 and older versions of R2

Line 21: (2 Int) data_type, reg_mode

where data_type is 0 for true data based inversion or 1 for log data based. Note that the
latter should improve convergence but may not work for internal electrodes (e.g.
borehole type) where the polarity can change due to resistivity distributions; reg_mode
is 0 for normal regularisation; or 1 if you want to include a background regularisation
relative to your starting resistivity (this is whatever you have set in input lines 11 to 13);
or 2 if you wish to regularise relative to a previous dataset using the difference inversion
of LaBrecque and Yang (2001). If you select reg_mode=1 then Line 22 will require a
regularisation parameter alpha_s. If you select reg_mode=2 then protocol.dat must
contain an extra column (see below) with the reference dataset. In addition, your starting
model (see Line 12) should be the inverse model for this reference dataset (i.e. you need
to invert the reference dataset before running the time-lapse inversion). Also note that if
you select reg_mode=2 then data_type is automatically set to 0 irrespective of what was
entered in Line 21.

NOTE: the following line input is different to v2.4 and older versions of R2

 24

if ((reg_mode = 0) or (reg_mode = 2)) then

Line 22: (Real, 2 Int, Real) tolerance, max_iterations, error_mod, alpha_aniso

Else

Line 22: (Real, 2 Int, 2 Real) tolerance, max_iterations, error_mod, alpha_aniso,
alpha_s

End if

where tolerance is desired misfit (usually 1.0); max_iterations is the maximum number of
iterations; error_mod is 0 if you wish to preserve the data weights, 2 if you wish the
inversion to update the weights as the inversion progresses based on how good a fit each
data point makes. error_mod=2 is recommended – this is a routine based on Morelli and
LaBrecque (1996). Note that no weights will be increased. The smoothing factor used in
the code (alpha) is searched for at each iteration. The search is done over a range of steps
in alpha, the number of steps is 10. alpha_aniso is the anisotropy of the smoothing factor,
set alpha_aniso > 1 for smoother horizontal models, alpha_aniso < 1 for smoother vertical
models, or alpha_aniso=1 for normal (isotropic) regularisation. alpha_s is the
regularisation to the starting model (if you set reg_mode = 1 in Line 21). Set alpha_s to a
high value (e.g. 10) to highly penalise any departure from this starting model. Note that
alpha_s will stay fixed – if you set it too high then R2 may not converge. R2.out will
report the value of alpha used to regularise smoothing within the image – the
regularisation relative to a reference model is additional to this. The user may find
setting alpha_s useful as a comparison of inversions from two runs with difference
reference models allows an assessment of the depth of investigation following the
approach of Oldenburg and Li (1999).

Line 23: (4 Real) a_wgt, b_wgt, rho_min, rho_max

where a_wgt and b_wgt are error model parameters describing the standard deviation of
measurements following:
 std(R) = sqrt((a_wgt*a_wgt) + (b_wgt*b_wgt) * (R*R))
where R is the resistance measured (LaBrecque et al., 1996 equation 14). Note that it is
the inverse of the standard deviation that is used as weight in the diagonal of the weight
matrix W.

It is advisable to estimate a_wgt and b_wgt from error checks in the field data (ideally
from reciprocal measurements - not measures of repeatability). Typically for surface
data a_wgt will be about 0.01 Ohms and b_wgt will be about 0.02 (roughly equivalent to
2% error). Note that if you select data_type=1 in Line 21 then although the resistance
data are transformed into log apparent conductivities the a_wgt and b_wgt parameters
should still reflect the variance of the resistance; rho_min and rho_max are the minimum
and maximum observed apparent resistivity to be used for inversion (use large extremes
if you want all data to be used). If data are ignored by R2 because of the apparent
resistivity limits then these will be reported individually in R2.out. NOTE: that the
apparent resistivity calculations assume that you have set the ground surface to z=0 and
that the ground surface is flat. Note also that you can select to include individual errors
for each measurement in the data input file protocol.dat – to do this a_wgt and b_wgt
should be set to 0.0 – protocol.dat will then require an additional column (see later).

Line 24: (num_param_x Int) param_symbol

 25

If you have specified zoning of parameters (inverse_type = 4 in line 18) so that each zone
is disconnected from other zones then for a structured quadrilateral mesh (see Figure
6.4) the zones are specified by producing a simple plan of the parameter mesh. You must
input for each row of parameters an integer representing the parameters. This is
repeated for each row. Make sure that you put a space between each integer. As an
example consider the zoned mesh in Figure 6.4 (copied below) with 20 elements in the x
direction and 12 elements in the z direction. In this example we wish to zone the region
shaded. As each element is a parameter then the patch size in x and z is 1, so in total
there are 20 parameters (x) by 12 parameters (z). If we want to set the boundary of the
shaded region so that there is no smoothing to the unshaded region then we would input:

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
1
1
1
1

 Note that we have used 1s and 2s to define the regions. We could have used any other

integer.

If for the problem above we had a patch size of 2 in x and z then Line 24 would be:

1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 2 2 2 2 2 2 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

If we had defined the problem to have a patch size in x of 4 and a patch size in z of 2 then
Line 24 would be:

1 2 2 2 1
1 2 2 2 1
1 2 2 2 1
1 2 2 2 1
1 1 1 1 1
1 1 1 1 1

 26

Repeat line 24 for all num_param_z

End if

End if

NOTE: Lines 25 to 26 define the region to be output (note that this was new to version 2.7)

Line 25: (Integer) num_xz_poly
where num_xz_poly is the number of x,z co-ordinates that define a polyline bounding the output volume.
If num_xz_poly is set to zero then no bounding is done in the x-z plane. The co-ordinates of the bounding
polyline follow in the next line. NOTE: the first and last pair of co-ordinates must be identical (to
complete the polyline). So, for example, if you define a bounding square in x,y then you must have 5 co-
ordinates on the polyline. The polyline must be defined as a series of co-ordinates in sequence, although
the order can be clockwise or anti-clockwise (see examples later). NOTE: R2 stores the vertical co-
ordinates for nodes in a structured quadrilateral mesh with a convention positive upwards. For example,
if the ground surface has an elevation of 0m and you wish to output to a depth of 8m then z=-8m must be
used for the lower boundary of the polygon. Similarly, if the ground surface elevation is 100m and you
wish to output to a depth of 8m then z=-92m must be used for the lower boundary of the polygon. This
was not the convention for v2.7a and so any input files created for that version must be changed (this
only applies to line 26). If a triangular mesh or quadrilateral mesh in mesh.dat is used then the co-
ordinates specified in the mesh file are used and the above comments about sign convention do not
apply.

Line 26: (2 Real) x_poly(1), z_poly(2)
where x_poly(1), z_poly(1) are the co-ordinates of the first point on the polyline.
Repeat line 26 for all num_xz_poly co-ordinates.

Line 27: (Int) num_electrodes

where num_electrodes is number of electrodes

If (mesh_type = 3 or 6) then

Line 28: (2 Int) j, node

where j is the electrode number and node is the node number in the finite element mesh

Else

Line 29: (3 Int) j, column, row

where j is the electrode number, column is the column index for the node the finite element mesh
and row is the row index for the node in the finite element mesh. The column value must be in
the range 1 to numnp_x and the row value must be in the range 1 to numnp_y. Both values must
be integer values.

End If

Repeat Line 29 for all num_electrodes

END OF INPUT FOR R2.in

 27

9. Details of protocol.dat

protocol.dat contains measurement schedule (and data for inverse if selected)

Line 1: (Int) num_ind_meas

where num_ind_meas is number of measurements to follow in file

If (job_type = 1) then

Line 2: (5 Int, 3 Real) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k), v_i_ratio, v_i_ratio_0, data_sd

where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode
number for the (M) P+ electrode; elec(2,k) is the electrode number for the (N) P- electrode;
elec(3,k) is the electrode number for the A (C+) electrode; elec(4,k) is the electrode number for
the B (C-) electrode; v_i_ratio is measured resistance value (or ratio of two measured values if
inverse_type=2 and qual_ratio=1 in R2.in); v_i_ratio_0 is the resistance data for background case
(only read if reg_mode=2); data_sd is data standard deviation (must be positive and only read if
a_wgt and b_wgt in line 23 of R2.in are both zero). NOTE: v_i_ratio should contain the polarity of
the measurement – do not assign only absolute values.

Repeat Line 2 for all num_ind_meas

Else

Line 3: (5 Int) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k)

where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode
number for the M (P+) electrode; elec(2,k) is the electrode number for the N (P-) electrode;
elec(3,k) is the electrode number for the A (C+) electrode; elec(4,k) is the electrode number for
the B (C-) electrode

Repeat Line 3 for all num_ind_meas

End if

You can add as many datasets to the file protocol.dat. Just concatenate the datasets into one file. R2 will
continue to read and process data using the settings defined in R2.in

END OF INPUT FOR protocol.dat

 28

10. Details of mesh.dat

It is useful if your mesh generator permits ‘materials’ to be defined, allowing some zoning of the mesh
(to permit blocking at interfaces). Also, you may find it beneficial (for computational efficiency) to
create a coarse mesh to define the parameters and then refine this mesh (splitting a triangle element
into more elements) to have more elements for the forward solution. The simplest mesh consists of an
equal number of parameters and elements and one zone. More complex arrangements allow for
grouping of elements into parameters and multiple zones. Regularisation is not applied at the interface
of zones.

NOTE: Line 1 changed from version 3.3

Line 1: (3 Int) numel, numnp, ndirichlet

Where numel is the number of triangle elements, numnp is the number of nodes and ndirichlet is the
node number of a specified dirichlet node, which should be a node far away from all electrode nodes. If
ndirichlet is set to zero then the code will compute the node that is furthest away. However, for some
geometries (e.g. a circular region) the node that is the furthest away based on average distance may be
close to one of the nodes. For such problems it is advisable to set the node in the centre of the mesh as
the dirichlet node to avoid biasing of the computed potential field.

Line 2: (6 Int) n, index(1,n), index(2,n), index(3,n), param(n), zone(n)

Where n is the element number; index(1,n), index(2,n) and index(3,n) are the node numbers of the
element, numbered in a counter-clockwise direction (R2 will check if this is correct for a triangular or
quadrilateral mesh that is read from mesh.dat); param(n) is the parameter number of the element (to
make every element a parameter then make this value equal to the element number); zone(n) is the
zone number for element n. To have one zone make zone(n) equal to 1 for all elements. Zones must be
connected elements. Parameters cannot occupy more than one zone. NOTE also, to make an parameter
fixed to the starting resistivity, set param(n) to zero but note that if this is done all elements with
param(n) = 0 must be at the end of the block of elements (see Surface 8 example below). This will
involve reordering elements and care must be taken to ensure that any associated files with the element
mapping (e.g. a start resistivity file, if used) but follow the same new element numbering. Note that
param(n) and zone(n) are not used in forward mode but these columns still need to be added to
mesh.dat

Repeat line 2 for all numel elements.

Line 3: (Int, 2 Real) n, x(n), z(n)

Where n is the node number; x(n), z(n) are the coordinates of node n.

Repeat line 3 for all numnp nodes.

END OF INPUT FOR mesh.dat

 29

11. Examples

The folder “Examples” contains a number of worked examples of R2 to illustrate how to setup input files
and work with model output.

11.1 Surface electrode array 1 – getting started
The subfolder “Examples/Surface_1/dpdp” contains an example synthetic model of a surface electrode
array using a dipole-dipole measurement scheme. The example is taken from Binley and Kemna (2005).
For this problem 25 electrodes are positioned at 2m spacing on a flat surface of a half space. The
electrodes are numbered 1 to 25 from left to right. A forward model is setup to determine the measured
transfer resistances for a dipole-dipole scheme with 117 measurements. The resistivity model is shown
in Figure 11.1. A small target with resistivity 10 Ωm lies within a 100 Ωm half space: positioned
vertically between depths 1m and 4m and horizontally between 14m and 16m.

Figure 11.1: Definition of synthetic model for surface array 1 problem

The subfolder “Examples/Surface_1/dpdp/Forward” contains the protocol.dat file for the forward
problem. Also contained in the folder is the file R2.in which defines the geometry and resistivity model.
Since the model is a half space the finite element mesh must extend significantly away from the region
of investigation (horizontally and vertically downwards). The mesh developed consists of 225 node
columns and 49 node rows (i.e. 11,025 nodes, 10,752 elements). The file R2.in shows how the mesh is
designed to get progressively coarser away from the region of study. Note that the co-ordinates of the
mesh have been set so that electrode 1 is at (0,0) for this problem. In the mesh electrode 1 is located at
node column 17 (i.e. there are 16 elements to the left of the electrode array to represent an infinite
boundary condition to the left. For this example 8 elements are placed between electrodes and so node
2 is at node column 25, node 3 is at column 33, etc. Since the electrodes are located on the ground
surface the row node for all electrodes is 1. All the electrode positions are assigned in R2.in. The file
also assigns the resistivity for all elements. For this problem it is done by defining the resistivity of 9
congruent blocks of elements. First all elements in the mesh are set to 100 Ωm and then 8 columns of
vertically adjacent elements are defined to set the 10 Ωm anomaly (remember that the elements are
numbered vertically then horizontally).

When R2 is run the output files are:

R2.out, which contains the main log of execution
electrodes.dat, which contains the electrode co-ordinates
R2_forward.dat, which contains the forward model, i.e. the 117 transfer resistances. Note that
the apparent resistivity for each of the 117 measurements is also stored.
forward_model.dat, which contains the co-ordinates of the centroid of each finite element in the
mesh, the resistivity of each finite element along with the logarithm (to base 10) of the resistivity.
This file is useful for checking if the resistivities were defined correctly in R2.in

In Binley and Kemna (2005) the same forward model is presented in pseudo section format.

The subfolder “Surface_1/dpdp/Inverse” contains files for running the inversion of the transfer
resistances determined above. For this a uniform starting resistivity of 100 Ωm is defined in the file
R2.in. The ‘data’ to be inverted is stored in file protocol.dat: here the values are simply the transfer
resistances that appeared in the R2_forward.dat file described earlier.

0 5 10 15 20 25 30 35 40 45-8

-4

0

0 5 10 15 20 25 30 35 40 45-8

-4

0

Distance (m)

Depth
(m) Electrode

10 Ωm
100 Ωm

 30

For the inverse problem we have used a patch_size of 4 in both x and z directions, i.e. each inverse
parameter is a 4 by 4 block of finite elements.

When R2 is run in this case the output files are:

R2.out, which contains the main log of execution;
electrodes.dat, which contains the electrode co-ordinates;
f001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite
element (in the entire mesh – not just the region of interest);
f001_err.dat, which contains the misfit for each of the 117 measurements;
f001_sen.dat, which contains the sensitivity map computed using equation 20;
f001.001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite
element after the first iteration. Note that the inversion converged after 2 iterations for this
problem and so this is the only intermediate solution.

Figure 11.2 shows the results of the inversion (compare with Fig 5.8 of Binley and Kemna(2005)). This
is an image map of the results in f001_res.dat (x and y in columns 1 and 2 and logarithm of resistivity in
column 4). Note that only the region within the electrode array and to a depth of 8m has been plotted.

Figure 11.2: Inverse model for surface array 1 problem with dp-dp array

In Figure 11.3a the sensitivity map is shown (res_matrix in line 2 of R2.in is set to 1). The values are
computed with equation 20. High values indicate areas of high measurement sensitivity. It is often
useful to use this map to mask the resistivity image (see example on cover page of this document).
Showing values of the sensitivity map < 0.001 of the maximum value as opaque is a useful guide for this.
Figure 11.3b shows the sensitivity map with each value scaled by the parameter cell area. In this case
the overall pattern is no different to the unscaled version since the finite element mesh is uniformly
discretised. However, for meshes where there is considerable variation in element sizes (and hence
parameter cell sizes) then the scaled version of the sensitivity map is likely to be more useful.

Had the problem been run with res_matrix in line 2 of R2.in set to 2 then the diagonal of the resolution
matrix would have been computed. This is useful for comparing models and measurement schemes. In
Figure 11.4 the map of the resolution matrix diagonal is shown. Values should be ideally equal to 1
(logarithm equal to 0) – values less than this indicate the effect of smoothing on the parameter value
(influence of adjacent parameter values). The map of the diagonal of the resolution matrix is very useful
for determining a suitable filter for displaying results.

0 5 10 15 20 25 30 35 40 45-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

 31

Figure 11.3: Sensitivity map for inverse model for surface array 1 problem with dp-dp array. (a) image
is unscaled; (b) image is scaled by parameter cell area.

Figure 11.4: Diagonal of resolution matrix for inverse model for surface array 1 problem with dp-dp

array

The subfolder “Surface_1/Wenner/Forward” contains files for running a forward model for the same
problem but using a Wenner configuration (see figure 5.7 of Binley and Kemna(2005) for the pseudo
section. The subfolder “Surface_1/Wenner/Inverse” contains the files for running the inverse model.
Figure 11.5 shows the resulting model. Figure 11.6a shows the sensitivity map for this problem; Figure
11.5b shows the diagonal of the resolution matrix for this solution, both illustrating a weaker resolution
in comparison to the dipole-dipole array (c.f. Figure 11.3 and 11.4).

 32

Figure 11.5: Inverse model for surface array 1 problem with Wenner array

Figure 11.6: Model appraisal for surface array 1 problem with Wenner array. (a) Sensitivity map; (b)

diagonal of resolution matrix. The colour scales used are identical to the equivalents for the dp-dp array
(Figure 11.3a and Figure 11.4).

11.2 Surface electrode array 2 – adding topography
The subfolder “Examples/Surface_2/dpdp” contains an example similar to the previous case but with
varying surface topography. Here the ground surface slopes from 0m at electrode 1 to 4.8m at electrode
25 (see Figure 11.7). The file R2.in is now different for the forward and inverse model runs through the
addition of topography data. Figure 11.8 shows the inverse solution for this case.

0 5 10 15 20 25 30 35 40 45-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

0 5 10 15 20 25 30 35 40 45-8

-4

0

4

Electrode

Distance (m)

Depth
(m)

10 Ωm
100 Ωm

 33

Figure 11.7: Definition of synthetic model for surface array 2 problem

Figure 11.8: Inverse model for surface array 2 problem with dipole-dipole array

11.3 Surface electrode array 3 – fixing parameter values
Occasionally it is useful to fix resistivity values within the mesh. This is particularly useful for time lapse
imaging where we wish to focus on changes within a particular part of the mesh. In R2 this can be
achieved with a quadrilateral mesh by defining left, right, upper and lower limits of the parameter zone
(see Line 16 and line 17 definitions for R2.in). To illustrate this we invert data from a previous example
but constrain the parameter zone to a smaller region of the mesh.

The subfolder “Examples/Surface_3/dpdp” contains an example similar to the Surface array 1 example
but this time the inverse model is defined so that not all elements are parameters. The forward model
used for generating the data file (protocol.dat) is that from Figure 11.1, i.e. in
“Examples/Surface_1/dpdp/Forward”.

For this example we use a patch_size of zero in the x and z directions and then define the location of the
zone to be parameterised. In R2.in a patch of 4 elements per parameter is defined in the horizontal
direction starting at element 1. All elements are grouped into parameters in the horizontal and thus
there are 56 patches of 4 elements declared (a total of 224 elements). In the vertical we define the
parameter zone to be from 1m to 6m depth and a patch size of 2 elements is used (10 parameters in
total corresponding to the 20 elements). The starting element for the parameterisation in the vertical is
5 (since the first four elements cover the first 1m in this case). Note that the resistivity of any element
that is not declared to contribute to a parameter remains unchanged from the starting value (in this case
100 Ωm).

Figure 11.9 shows the resultant inverse model. The sharp boundaries (in the vertical) at 1m and 6m are
a result of the constrained parameter zone (there is no smoothing over the boundaries).

Note that if you restrict the parameter zone too much then convergence of the solution may be
problematic (since you will be reducing the degrees of freedom of the inverse solution).

0 5 10 15 20 25 30 35 40 45-8

-4

0

4

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

 34

Figure 11.9: Inverse model for surface array 3 problem

11.4 Surface electrode array 4 – anisotropic smoothing
The subfolder “Examples/Surface_4/dpdp” contains an example similar to the Surface array 1 example
but this time the smoothing is set to be anisotropic. For this case the smoothing is exaggerated in the
vertical by setting alpha_aniso in Line 22 of R2.in to 0.1 (10 times more smoothing in the vertical).
Figure 11.10 shows the resultant inversion (c.f. Figure 2 with isotropic smoothing).

Figure 11.10: Inverse model for surface array 4 problem

11.5 Surface electrode array 5 – more complex meshing
The quadrilateral mesh examples so far have used a simple mesh definition. For the surface array 2
example the mesh was distorted by changing the topography of the upper surface of the mesh. In this
example we illustrate how to change the mesh in a more flexible manner. By setting mesh_type to 5 in
Line 2 of R2.in we can specify the row coordinates for every column of the mesh. This requires more
input information than the previous examples but gives much greater flexibility.

The subfolder “Examples/Surface_5/dpdp/Forward” contains a forward modelling example similar to
the Surface array 1 example but in this case a zone of low resistivity lies just below the ground surface
and varies in thickness from 0.5m at electrode 1 to 1m at electrode 25. In addition, the electrodes are
located in this example at the bottom of this conductive zone (see Figure 11.11). Such a model may be
representative of electrical imaging using electrodes placed at the bed of a stream (the conductive zone
representing the stream).

To setup this forward model the 49 row coordinates are defined for all 225 column positions. In
addition, R2.in must also contain the definition of more groups of elements than before to represent the
conductive zone (remember that the zones are defined as groups of congruent elements and since the
elements are numbered in the vertical then we must define 224 such groups for this problem, in
addition to the rest of the region, i.e. 225 groups in all).

0 5 10 15 20 25 30 35 40 45-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

0 5 10 15 20 25 30 35 40 45-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

 35

Figure 11.11: Forward model for surface array 5 problem

11.6 Surface electrode array 6 – depth of investigation
The subfolder “Examples/Surface_6” contains three examples illustrating the use of a reference
resistivity model. The examples use the dipole-dipole forward model from Surface electrode array 1 but
invert three difference cases with reg_mode set to 1 (see line 21 of R2.in).

In case_01 we set αs to 10 with a resistivity background (starting model or reference model) equal to a
uniform ρback=100m. The results are shown in Figure 11.12a. The result is similar to that shown in
Figure 11.2 (no regularisation relative to a reference model).

In case_02 we set αs to 50 with a uniform ρback=100Ωm. The results are shown in Figure 11.12b. The
target recovery is now weaker as the inversion applies more penalty to deviation from 100Ωm.

In case_03 we set αs to 10 with a uniform ρback=50Ωm. The results are shown in Figure 11.12c. Recalling
that the background resistivity in the forward model is 100Ωm, Figure 13c illustrates the zone over
which the measurements have sensitivity – the lower left and right regions are clearly not influenced by
the measurements in this case (which is consistent with the resolution matrix in Figure 11.4).

Figure 11.12: Surface array 6 – regularising relative to a reference resistivity model.

(a) αs=10, ρback=100Ωm. (b) αs=50, ρback=100Ωm. (c) αs=10, ρback=50Ωm.

0 5 10 15 20 25 30 35 40 45-8

-4

0

Distance (m)

Depth
(m) Electrode 10 Ωm

100 Ωm

0 5 10 15 20 25 30 35 40 45-8

-4

0

0 5 10 15 20 25 30 35 40 45-8

-4

0

0 5 10 15 20 25 30 35 40 45-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Distance (m)

Depth
(m)

Distance (m)

Depth
(m)

(a)

(b)

(c)

 36

We can use these results to assess the depth of investigation (DoI), following the method of Oldenburg
and Li (1999). We can compute the value:

 𝑅𝑅(𝑥𝑥,𝑦𝑦) =
𝑚𝑚1(𝜕𝜕,𝑦𝑦)−𝑚𝑚2(𝜕𝜕,𝑦𝑦)

𝑚𝑚1,𝑟𝑟−𝑚𝑚2,𝑟𝑟

Where m1 are the inversion results in Figure 12a (in log units) using 100Ωm as a reference and m2 are
the inversion results in Figure 11.12c (in log units) using 50Ωm then, m1,r = log10(100) and m2,r =
log10(50). Figure 11.13 shows the variation of R. Oldenburg and Li (1999) suggest a reasonable value of
R = 0.1 or 0.2 as a suitable depth of investigation. Figure 11.13 shows a contour of R = 0.2 to illustrate
this.

Figure 11.13: Depth of investigation for Surface array 6 problem.

11.7 Surface electrode array 7 – time-lapse (difference) inversion
The subfolder “Examples/Surface_7” contains an example illustrating the use of a difference inversion,
which may be useful for time-lapse (monitoring) studies. Here we use two forward models as datasets
representing changes in resistivity from time 0 to time 1 (see Figure 11.14).

“Examples\Surface_7\dpdp\Forward_t0” contains input files for running a forward model at time 0 and
“Examples\Surface_7\dpdp\Forward_t1” contains input files for running a forward model at time 1. In
each case R2 produces the file R2_forward.dat, which contains the transfer resistances due to the
resistivity structure defined. The two R2_forward.dat files will be used to create an input data file for a
difference inversion.

If we select a difference inversion the data file for inversion (protocol.dat) contains two columns of
data, as defined earlier in this document. The first column is the measured data (here, at time 1) and the
second column is the reference dataset (here, at time 0). The folder
“Examples\Surface_7\dpdp\Inverse_difference” contains input files for the difference inversion.

For a difference inversion the starting model for the inversion (which is often just a homogenous model
for normal inversions) is the resistivity that is consistent with the reference dataset. For this synthetic
example we need to determine this model by inverting the forward model at time 0. This is equivalent
to Surface electrode array 1, but note that we must save the entire resistivity model, not just the region
of interest. Start_resis.dat is resulting inversion of the forward model from time 0.

Figure 11.15 shows the results (in f001_res.vtk) plotted as log resistivity, using ParaView. The
electrode locations (from file electrodes.vtk) are also shown.

When running a difference inversion an output file f001_diffres.dat is produced (in addition to the
normal inverse output files). f001_diffres.dat provides values of percentage change (from the starting
model) in resistivity. The file f001_res.vtk also contains this information and is illustrated in Figure
11.16.

0 5 10 15 20 25 30 35 40 45-8

-4

0

0 0.2 0.4 0.6 0.8 1
Depth of investigation

Distance (m)

Depth
(m)

 37

Figure 11.14. Forward model definitions for difference inversion example. The upper image is time 0;
the lower image is time 1. (Plotted in ParaView, the grid shows the finite element discretisation).

Figure 11.15. Resistivity model obtained from difference inversion (plotted in ParaView).

Figure 11.16. Change in resistivity from difference inversion (plotted in ParaView).

 38

11.8 Surface electrode array 8 – triangular meshing
The folder Examples/Surface_8/ contains input files for running a forward and inverse problems for the
dipole-dipole survey (from Surface electrode array 1) using a triangular mesh. The mesh is defined in
mesh.dat. It contains 4,204 elements and 2,160 nodes. The region modelled extends approximately
200m to the left and right of the electrode array, and approximately 200m beyond the zone of
investigation.

The folder Examples/Surface_8/Forward contains the input files for a forward model. In this mesh the
first 40 elements represent the 10Ωm: in R2.in the two regions are defined. Figure 11.17 shows a plot of
the forward model definition using ParaView. Note that the region extracted for plotting is based on
the position of the centroid of elements and consequently a ‘jagged’ boundary often exists for triangular
mesh output.

Figure 11.17: Definition of forward model using a triangular mesh

The folder Examples/Surface_8/Inverse_1 contains the input files for an inversion of the dipole-dipole
data using a triangular mesh. Figure 11.18 shows the result, plotted in ParaView.

Figure 11.18: Inversion of dipole-dipole data.

The folder Examples/Surface_8/Inverse_2 contains the input files for an inversion of the same data
using anisotropic regularisation to minimise lateral smoothing (see Figure 11.19).

 39

Figure 11.19: Inversion of dipole-dipole data with enhanced vertical smoothing.

The folder Examples/Surface_8/Inverse_3 contains the input files for an inversion of the same data as
above but in this example the inverse region is blocked into two zones: one representing the low
resistivity zone in Figure 11.17 and the other representing the remainder of the mesh. The inversion is
show in Figure 11.20. Note that although there is variation within each zone (since the same number of
parameters exists), by defining the boundaries a near-perfect result is achieved (although this is a
somewhat artificial case).

Figure 11.20: Inversion of dipole-dipole data with region blocking.

The folder Examples/Surface_8/Inverse_4 contains input files to illustrate the effect of fixing resistivity
using a triangular mesh. In this case the starting resistivity is set to 20 Ωm and 40 elements that occupy
the area where the low resistivity feature exists are removed from the parameterisation by setting their
parameter number to zero in mesh.dat. Note that to do this we have to move this block of elements in
mesh.dat to the end of the list of elements (compare Examples/Surface_8/Inverse_4/mesh.dat with
Examples/Surface_8/Inverse_3/mesh.dat). Since we have assigned parameter number zero to these
elements then the resistivity remains fixed to the starting model (20 Ωm) but all other elements can
change in the inversion. Figure 11.21 shows the resulting inversion. Note that the true target is 10 Ωm
and so by forcing the region to be 20 Ωm the adjacent elements are affected as the inversion
compensates for the difference.

 40

Figure 11.21: Inversion of dipole-dipole data with 40 elements (where the ‘target’ is located) set to 20

Ωm (the true value is 10 Ωm and so some smearing around the ‘target zone’ exists).

11.9 Surface electrode array 9 – quadrilateral mesh in mesh.dat
The folder Examples/Surface_9/ contains input files for running a forward and inverse problem when a
quadrilateral mesh is read from mesh.dat (i.e. mesh type = 6). The example used here is the same setup
as Surface electrode array 1 using a dipole-dipole configuration, but rather than defining a mesh in
R2.in, it is read from the file mesh.dat. Figure 11.22 shows the inverse model. Clearly for this problem
the use of a separate mesh file is unnecessary, but it allows the user to understand the way in which a
pre-defined quadrilateral mesh can be used.

Figure 11.22: Inversion of dipole-dipole surface electrode data using quadrilateral mesh read from

mesh.dat

11.10 Cross borehole array
The subfolder “Examples\Xbh” contains forward and inverse models for two cross borehole examples
illustrated in Binley and Kemna (2005). The first case considered here is included in
“Examples\Xbh\8m_skip7”. In this case measurements are made between two boreholes 8m apart, as
illustrated in Figure 11.23. As in previous examples a zone with resistivity 10 Ωm is embedded in the
100 Ωm half space. The measurement scheme used is a “skip 7”: dipole – dipole with 7 electrode in
between each current and potential electrode pair (see the protocol.dat file).

The forward model input files are included in “Examples\Xbh\8m_skip7\forward” and the inverse
model files are in “Examples\Xbh\8m_skip7\inverse”. Figure 11.24 shows the output of the inverse
solution using the forward model as “data”.

The second cross borehole case is for two boreholes 15m apart, as illustrated in Figure 11.25. The
forward model input files are included in “Examples\Xbh\15m_skip7\forward” and the inverse model
files are in “Examples\Xbh\15m_skip7\inverse”. Figure 11.26 shows the output of the inverse solution
using the forward model as “data”. The effect of increased spacing of the boreholes on sensitivity of the
measurements can be seen by comparing Figures 11.26 and 11.24.

 41

Figure 11.23: Forward model definition for cross borehole case 1

Figure 11.24: Inverse model for cross borehole case 1

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

Depth
(m)

Distance (m)

Electrode

10 Ωm

100 Ωm

Ground surface

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

Depth
(m)

Distance (m)

1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

 42

Figure 11.25: Forward model definition for cross borehole case 2

Figure 11.26: Inverse model for cross borehole case 2

11.11 Column model
The subfolder “Examples\Column” contains forward and inverse models for a simple circular
arrangement of electrodes. In this example 16 electrodes are placed around the perimeter of a circular
region (representing, for example, a soil column). In the forward model (see Figure 11.27) a 500Ωm
circular target is placed in the 100Ωm vessel. The mesh in Figure 11.27 was used to compute the
response of 103 measurements in a dipole-dipole configuration. The generated transfer resistance were
then perturbed with noise with zero mean and a standard deviation related to the transfer resistance, 𝑅𝑅
according to:

0 2 4 6 8 10 12 14

-14

-12

-10

-8

-6

-4

-2

0

Ground surface

Depth
(m)

Electrode

10 Ωm

100 Ωm

Distance (m)

Depth
(m)

Distance (m)

1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

0 2 4 6 8 10 12 14

-14

-12

-10

-8

-6

-4

-2

0

 43

𝜎𝜎(𝑅𝑅) = √𝑎𝑎2 + 𝑏𝑏2𝑅𝑅2,

with 𝑎𝑎 = 0.001Ω and 𝑏𝑏 = 0.02.

These data were then used for the inversion with a_wgt set to 0.001 and b_wgt set to 0.02. Note that to
avoid any bias in the modelling a different finite element mesh was used for the inversion, since the
forward modelling mesh has a higher density of elements in the region of the anomaly in order to
correctly place the anomaly in the mesh. In the inverse model mesh a more uniform triangular mesh is
used. Figure 11.27 shows the inverse model for the problem.

Figure 11.27: Column model example. Left hand image shows finite element mesh used for forward
model. Centre image is the forward model. Right image is the inverse model.

 44

12. Additional codes and scripts

The R2 package contains a number of codes and scripts that may help the user in creating input files and
visualising output from R2. Note that I have not tested any of these except the first set of mesh utilities.
Some of these scripts may not be compatible with current versions of R2 and Gmsh.

Meshing

Folder Mesh_Utilities/Binley

GenGmshGeo2D.exe
Creates a Gmsh geo (geometry file) which may be used for creating a triangular mesh. Note that the geo
file can be edited before meshing, e.g. to add topography. The geo file created is GenGmshGeo2D.geo

GmshMsh2R2.exe
Reads the GenGmshGeo2D.geo created (and, perhaps, edited) in Gmsh, which can be meshed, creating
a msh (mesh file) mesh.dat. Note that the first line will contain the number of elements, which is
needed in R2.in for defining the resistivity (starting model or forward model definition).

Gen_R2in.exe
Reads a ProfileR.in file (see www.es.lancs.ac.uk/people/amb/freeware/profiler/profiler.htm) and
creates an R2.in file for an equivalent mesh. This is useful for users moving from the simpler inverse
code ProfileR to R2.

Folder Mesh_Utilities/Boyd

gmsh2R2msh
This python code and executable (written by Jimmy Boyd (British Geological Survey/Lancaster
University) with convert a Gmsh msh file to an R2 mesh.dat file.

Folder Mesh_Utilities/Claes

create_mesh
A Matlab script written by Niels Claes (Wyoming University) will create an R2 mesh.dat file for a
triangular mesh.

Plotting

Folder Plot_Utilities/Claes

plot_resistivity
This folder contains a Matlab code for plotting output from R2, kindly provided by Niels Claes
(University of Wyoming).

Folder Plot_Utilities/Tso

plot_resistivity
This folder contains a Matlab code for plotting output from R2, kindly provided by Michael Tso
(Lancaster University). The code will plot different levels of transparency depending on the sensitivity
map.

 45

Complete wrapper (files not included but can be downloaded from links)

pyres
Kevin Befus (University of Wyoming) has produced a python wrapper for R2 – see Befus (2017) and
https://github.com/kbefus/pyres.

ResIPy GUI
Guillaume Blanchy (Lancaster), Sina Saneiyan (Rutgers) , Jimmy Boyd (BGS/Lancaster), Paul McLachlan
(Lancaster/BGS) have developed an open source python GUI for R2 and sister codes. See
https://gitlab.com/hkex/resipy which also includes links for standalone executables. More information
is also available at https://resipy.org/

https://github.com/kbefus/pyres
https://gitlab.com/hkex/resipy
https://resipy.org/

 46

13. Getting started with ParaView

The vtk files created by R2 have been structured to work in ParaView - an open source visualisation
application that can be downloaded from https://www.paraview.org/ Users are advised to study online
tutorials on ParaView. Here are a few simple tips to help the user get going.

The fXXX_res.vtk file contains the inverted resistivity, log transformed resistivity, a sensitivity map or
resolution matrix (if selected) and a difference inversion (if selected). The file also contains the finite
element mesh structure.

Open a fXXX_res.vtk file in ParaView, click Apply under Properties and you will get a map of the
resistivity. Under Coloring in Properties you can select one of other variables stored, e.g.
log10resistivity.

The default Representation of the image is Surface. Change to Surface with edges to see the finite
element mesh and the resistivity image.

Axis labels and the colour legend are easily changed to suit the user.

To get an interpolated image (rather than one that shows element by element) then highlight the vtk file
in the Pipeline Browser and select the Cell Data to Point Data Filter. Then select Apply in Properties.

If you want to show an image with thresholded values based on the sensitivity map then select an
Opacity of 0.6 under Styling in Properties. Now select the Clip Filter. Select Clip Type as Scalar under
Properties and select Sensitivity(log10) as Scalars. Select a mid-range value in the slider bar for Value.
Under Coloring select Resistivity(log10). You should now see the thresholded region as a solid colour
and the outer area as opaque (see figure below).

To show the electrodes, open the electrodes.vtk file and click Apply under Properties. Now select the
Glyph filter and under Glyph type select Sphere. Make the radius of the sphere smaller than the default,
say 0.05, and select Apply. You can change the colour of the glyph in the Properties box. If not all
electrodes are displayed then select Masking under Properties and select Glyph mode to All Points. I
have noticed in recent versions of Paraview that Glyph plotting sometimes does not show all the points.
This appears to be a bug in recent Windows versions of Paraview. If this occurs then you can show
electrodes positions by simply selecting the properties type of electrodes.vtk in Paraview to Point
Gaussian (see example below).

 47

 48

14. Common user errors

Below is a list of some common user errors that I have encountered. This may be useful for new users.

A common mistake is for a new user to go straight into trying to run an inverse solution without getting
a good feeling for the model that is being used. New (and old) users working on new problems should
first try run a forward model for a uniform resistivity. This will help sort out any problems with the
definition of the mesh, etc. It will also be useful in understanding the quality of the forward model and
help judge this against the quality of the data.

If you can, run the code from the command line. You will need to run CMD in Windows, then move to
the correct folder and then type R2. Doing it like this help see any errors if the program crashes
unexpectedly because of incorrect input.

In the example input files provided there are comments at the end of most lines in the form
“<< comment” . Note that these are always at the end of a line. You cannot have these appearing on
their own in a line. If you do then R2 will try read this comment when it is expecting numerical input
and simply crash.

The mesh is based on elements and nodes. In R2.in Lines 3 to 9 are based on nodes, whereas Line 13 is
based on elements. It is important to understand the difference and not mix the two.

On Line 22 in R2.in, specifying a tolerance of 1.0 means that you are happy that you have estimated
your errors correctly (Line 23). Don’t just use the a_wgt and b_wgt values in the example files – spend
time to understand the likely errors in your measurements and model.

Setting data_type to 1 in Line 22 of R2.in means that the data you input will be log transformed in R2,
not that you have to supply logged data. You must specify the polarity of the data, as always.

Setting the minimum and maximum apparent resistivity (Line 23 of R2.in) is only valid if you have a flat
surface and an infinite half space problem, otherwise the geometric factors that R2 will compute will be
incorrect.

For a structured quadrilateral mesh the electrode positions are defined by their column and row
positions in the mesh (Line 27 of R2.in). These are not the co-ordinates of the electrodes but their
position in the mesh.

In the definition of the input files, each line has been defined in terms of the type of numbers that are
required. For example, (Real, 2 Int, 2 Real) means one real number, followed by two integers, followed
by two reals. You can substitute integers for reals but not the other way round. So if the code is
expecting an integer and your line entry has 1.3, for example, then the code will crash.

Note that the data in protocol.dat should be provided in transfer resistances, NOT apparent
resistivities. Also note that the polarity should be retained in the data. It is very wise to check the
polarity of your measurements – you can do this by computing the geometric factor for your
measurement configuration (provided topographic and non-infinite boundaries are not significant). If
you don’t know how to compute the geometric factors then you should run a forward model with R2 for
a uniform half space and compare the computed polarities with those in your data. For a surface
electrode array your data should be the same polarity as the model, otherwise the measurements will
not be included in the inversion. For electrodes not on the surface the polarity can change as the
resistivity structure changes in the inversion.

Make sure you check that the solution has converged in inverse mode (see R2.out). Just because a
resistivity model has been computed it does not mean that convergence has been reached. If the
solution has not converged then go through the fXXX_err.dat file and look at see if any particular

 49

measurements are problematic. Also check that you are confident with the a_wgt and b_wgt error
settings you have applied (Line 23, R2.in). A common mistake is to set these too low. A good estimate
of b_wgt, in particular, is important. Normally, you should be able to get convergence in less than 5
iterations. It is not wise to increase the maximum number of iterations to a large number. If you don’t
get convergence in 10 iterations then there is definitely some problem with the data, the assumptions or
the input files.

 50

14. References

Befus, K.M. , 2017, pyres: A Python Wrapper for Electrical Resistivity Modeling with R2, J. Geophys. Eng.,
doi: 10.1088/1742-2140/aa93ad

Binley, A., 2015, Tools and Techniques: DC Electrical Methods, In: Treatise on Geophysics, 2nd Edition, G
Schubert (Ed.), Elsevier., Vol. 11, 233-259, doi:10.1016/B978-0-444-53802-4.00192-5.
(available from the author on request).

Binley, A. and A. Kemna, 2005, Electrical Methods, In: Hydrogeophysics by Rubin and Hubbard (Eds.),
129-156, Springer

Binley, A. and L. Slater, 2020, Resistivity and Induced Polarization. Theory and Applications to the Near-
Surface Earth, Cambridge University Press, 388pp.

Blanchy, G., S. Saneiyan, J. Boyd, P. McLachlan and A. Binley, 2020, ResIPy, an intuitive open source
software for complex geoelectrical inversion/modeling in 2D space, Computer & Geosciences, 137, DOI:
10.1016/j.cageo.2020.104423

Boyd, J., Blanchy, G., Saneiyan, S., Binley, A., 2019. 3D geoelectrical problems with ResIPy, an open-
source graphical user interface for geoeletrical data processing. FastTIMES 24.

Kotre, C.J., 1994, EIT Image Reconstruction Using Sensitivity Weighted Filtered Back-projection, Physiol
Meas., 15, 125–136.

LaBrecque, D.J. and X. Yang, 2001, Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In
Situ Monitoring, Journal of Environmental and Engineering Geophysics, 6(2), 83-89.

LaBrecque, D. J., M. Miletto, W. Daily, A. Ramirez and E. Owen, 1996, The effects of noise on Occam’s
inversion of resistivity tomography data, Geophysics, 61, 538-548.

Lowry, T., M.B. Allen, and P.N. Shive, 1989, Singularity removal: A refinement of resistivity modeling
techniques, Geophysics, 54, 766–774.

Morelli, G. and D.J. LaBrecque, 1996, Advances in ERT modeling, European Journal of Environmental and
Engineering Geophysics, 1, 171-186.

Oldenburg, D. and Y. Li, 1999, Estimating depth of investigation in dc resistivity and IP surveys,
Geophysics, 64(2), 403-416.

For more information, including example files contact:

Andrew Binley
Lancaster Environment Centre

Lancaster University
Lancaster LA1 4YQ, UK

Email: a.binley@lancaster.ac.uk

	1. Recent version history
	2. Computer requirements for R2 v4.11
	3. Introduction to R2 v4.11
	4. Forward and inverse modelling in R2
	4.1 Forward modelling
	4.2 Inverse modelling
	4.3 Inverse model appraisal

	5. Designing meshes
	5.1 Gmsh mesh utility codes for R2

	6. Parameterisation
	7. Input and output files
	8. Details of R2.in
	9. Details of protocol.dat
	10. Details of mesh.dat
	11. Examples
	11.1 Surface electrode array 1 – getting started
	11.2 Surface electrode array 2 – adding topography
	11.3 Surface electrode array 3 – fixing parameter values
	11.4 Surface electrode array 4 – anisotropic smoothing
	11.5 Surface electrode array 5 – more complex meshing
	11.6 Surface electrode array 6 – depth of investigation
	11.7 Surface electrode array 7 – time-lapse (difference) inversion
	11.8 Surface electrode array 8 – triangular meshing
	11.9 Surface electrode array 9 – quadrilateral mesh in mesh.dat
	11.10 Cross borehole array
	11.11 Column model

	12. Additional codes and scripts
	13. Getting started with ParaView
	14. Common user errors
	14. References

