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1 Introduction

Previous publications (e.g. Young, 1978, 1983, 1993a,b, 1998a,b, 1999a,b;
Young and Runkle, 1989; Young and Minchin, 1991; Young et al., 1991; Young
and Lees, 1993; Young and Beven, 1994; Young and Pedregal, 1997, 1998,

1999) have discussed an approach to nonstationary and nonlinear signal pro-
cessing based on the identification and estimation of stochastic models with
time variable (TVP) or state dependent (SDP) parameters. Here the term
‘nonstationarity’ is assumed to mean that the statistical properties of the
signal, as defined by the parameters in an associated stochastic model, are

changing over time at a rate which is ‘slow’ in relation to the rates of change
of the stochastic state variables in the system under study. Although such
nonstationary systems exhibit nonlinear behaviour, this can often be approx-
imated well by TVP (or piece-wise linear) models, the parameters of which
can be estimated using recursive methods of estimation in which the param-

eters are assumed to evolve in a simple stochastic manner (e.g. Young, 1984,
1999a). On the other hand, if the changes in the parameters are functions of
the state or input variables (i.e. they actually constitute stochastic state vari-
ables), then the system is truly nonlinear and likely to exhibit severe nonlinear
behaviour. Normally, this cannot be approximated in a simple TVP manner;

in which case, recourse must be made to the alternative, and more powerful
SDP modelling methods that are the main topic of this chapter.

The extension of the TVP estimation methods to allow for state dependency,
as described here, involves two statistical stages.

• First, the non-parametric identification of the state dependency using
recursive methods of time variable parameter estimation which allow for

rapid (state dependent) parametric change. As we shall see, the standard
methods of TVP estimation developed previously for nonstationary time
series analysis need to be modified considerably in this SDP setting to
allow for the much more rapid temporal changes that arise from the state
dependency.
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• Second, the parameterization of the identified non-parametric relation-
ships, followed by the statistically efficient estimation of the (now nor-

mally constant) parameters that characterize these nonlinearities.

The first identification stage in this process exploits recursive Fixed In-
terval Smoothing (FIS) algorithms, combined with special data re-ordering
and ‘back-fitting’ procedures, to obtain estimates of any state dependent pa-
rameter variations. These state dependencies are estimated in the form of

non-parametric relationships (graphs) between the estimated rapid parameter
variation and the associated state or input variable(s). Parameterization of
these non-parametric relationships can be accomplished in various ways, from
simple curve fitting based on weighted least squares methods (Young, 1993a;
Young and Beven, 1994) to the use of neural networks or radial basis functions.

Having identified a structural form for the nonlinear model of the system
based on the parameterized nonlinear relationships, this model is converted

into a stochastic state space form. The final estimation phase of the nonlin-
ear modelling then exploits Maximum Likelihood (ML) methods of estimation,
based on Gaussian Assumptions for the stochastic disturbances and the appli-
cation of Prediction Error Decomposition (Schweppe, 1965). If successful, this
yields statistically efficient estimates of the constant parameters in the identi-

fied nonlinear state space model. The resulting model should then provide a
parametrically efficient representation of the stochastic, nonlinear system that
has considerable potential for use in subsequent signal processing, time series
analysis, forecasting and automatic control system design. For example, the
methodology described here exploits recursive estimation in an off-line man-

ner but this sequential processing of the data facilitates the development of
related on-line adaptive methods of signal processing, forecasting and control.

Although primarily concerned with nonlinear state dependent parameter
models, as outlined above, the chapter also provides a sequel to a previous pa-
per (Young, 1999a) that discusses the simpler class of ‘linear’ TVP regression
relationships. These include the Dynamic AutoRegressive eXogenous vari-
ables (DARX) model, the constant parameter version of which is often used

in the modelling of linear stochastic, dynamic systems. As a prelude to our
discussion of SDP estimation, therefore, the next section 2 considers the alter-
native Dynamic Transfer Function (DTF) model, using a new instrumental
variable method of FIS, and shows how this is much superior to the DARX
model when measurement noise is present (the errors-in-variables situation).

This leads naturally to the definition of the more complex SDP transfer func-
tion models of truly nonlinear, stochastic dynamic systems and the associated
methods of statistical identification and estimation.

In order to illustrate the practical application and utility of both the TVP
and SDP methods, the chapter also contains a number of simulation exam-
ples, as well as a practical study involving a re-analysis of the famous Nichol-
son blowfly data (Nicholson, 1954). Other, practical examples cited in the
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references cover a variety of application areas from the environment through
engineering to economics.

2 TVP Transfer Function Models: DTF Model Es-
timation

A previous paper (Young, 1999a) has discussed the estimation of time variable
parameters in the various kinds of ‘linear’ regression model. One of these, the
Dynamic1 Auto-Regressive eXogenous variables (DARX) model is capable of
modelling the input-output behaviour of stochastic, dynamic systems. The

DARX model relating a single input variable ut to an output variable yt, can
be written in the following form:

yt = −a1,tyt−1−· · ·−an,tyt−n+b0,tut−δ+b1,tut−δ−1+· · ·+bm,tut−δ−m+et (1)

or, in transfer function terms,

yt =
B(L, t)

A(L, t)
ut−δ +

1

A(L, t)
et et = N(0, σ2). (1a)

In these equations, L is the backward shift operator, i.e., Lryt = yt−r, A(L, t)
and B(L, t) are time variable coefficient polynomials in L of the following form:

A(L, t) = 1 + a1,tL + a2,tL
2 + · · · + an,tL

n

B(L, t) = b0,t + b1,tL + b2,tL
2 + · · · + bm,tL

m.
(1b)

The term δ is a pure time delay, measured in sampling intervals, which is intro-

duced to allow for any temporal delay that may occur between the incidence
of a change in ut and its first effect on yt; and et is a zero mean, white noise
input with Gaussian normal amplitude distribution and variance σ2.

Unfortunately, the DARX model is limited in practical terms since it de-
pends on the assumption of the above, rather specific, signal topology, with the

noise entering the model through a restricted AR process with a polynomial
A(L, t) equal to that of the denominator polynomial in the main DTF be-
tween ut−δ and yt. A more general Dynamic Transfer Function (DTF) model,
without the restrictions of the DARX, is the following:

yt =
B(L, t)

A(L, t)
ut−δ + ξt (2a)

where ξt represents uncertainty in the relationship arising from a combination
of measurement noise, the effects of other unmeasured inputs and modelling

1The term ‘dynamic’ is used here for historical reasons (see Young, 1999a) to mean a
time variable parameter ARX model.
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error. Normally, ξt is assumed to be independent of ut and is modelled as an
AutoRegressive (AR) or AutoRegressive-Moving Average (ARMA) stochastic

process (see e.g. Box and Jenkins, 1970; Young, 1984), although even this
restriction can be avoided by the use of instrumental variable methods, as
discussed below.

Equation (2a) can be written in the following vector equation form:

yt = zT
t pt + µt (2b)

where,
zT

t = [−yt−1 − yt−2 . . . − yt−n ut−δ . . . ut−δ−m]

pt = [a1,t a2,t . . . an,t b0,t . . . bm,t]
T

(2c)

and µt = A(L, t)ξt. For convenience of notation, let pt be defined as follows,

pt = [p1,t p2,t . . . pn+m+1,t]
T (2d)

with pi,t, i = 1, 2, . . . , n+m+1, relating to the TF model parameters ai,t and
bj,t through (2c).

In order to estimate the assumed time variable model parameters in pt, it
is necessary to make some assumptions about the nature of their temporal
variability. Reflecting the statistical setting of the analysis and referring to
previous research on this topic, it seems desirable if this is characterized in

some stochastic manner. Normally, when little is known about the nature of
the time variability, this model needs to be both simple but flexible. One of
the simplest and most generally useful class of stochastic, state space models
involves the assumption that the ith parameter, pi,t, i = 1, 2, . . . , n+m+1, is
defined by a two-dimensional stochastic state vector xi,t = [li,t di,t]

T , where li,t
and di,t are, respectively, the changing level and slope of the associated TVP.
This selection of a two-dimensional state representation of the TVPs is based
on practical experience over a number of years. Initial research by the author
and others in the 1960s (Young, 1969, 1970a) tended to use a simple scalar
random walk (RW) model for the parameter variations. However, later work

in the 1980s (see above references) showed the value of modelling not only the
level changes in the TVPs but also their rates of change, as in the definition
of xi,t, above.

The stochastic evolution of each xi,t (and, therefore, each of the n + m + 1
parameters in pt) is assumed to be described by a Generalized Random Walk
(GRW) process defined in the following State Space (SS) terms:

xi,t = Fixi,t−1 + Giηi,t i = 1, 2, . . . ,m + n + 1, (2e)

where

Fi =

[
α β
0 γ

]
, Gi =

[
δ 0
0 ε

]
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and ηi,t = [η1i,t η2i,t]
T is a 2× 1, zero mean, white noise vector that allows for

stochastic variability in the parameters and is assumed to be characterized by

a (normally diagonal) covariance matrix Qηi. This general model comprises
as special cases the Integrated Random Walk (IRW: α = β = γ = ε = 1;
δ = 0); the scalar Random Walk (RW: scalar but equivalent to (2e) with
β = γ = ε = 0; α = δ = 1: i.e. just the first equation in (2e), see below);
the intermediate case of Smoothed Random Walk (SRW: 0 < α < 1; β =
γ = ε = 1; and δ = 0); the first order autoregressive process (AR(1): again

scalar with β = γ = ε = 0; 0 < α < 1; δ = 1; and, finally, both the
Local Linear Trend (LLT: α = β = γ = ε = δ = 1)2; and Damped Trend (DT:
α = β = δ = ε = 1; 0 < γ < 1): see Harvey, 1984, 1989. The various, normally
constant, parameters in this GRW model (α, β, γ, δ, ε and the elements of
Qηi) are often referred to as hyper-parameters. This is to differentiate them

from the TVPs that are the main object of the estimation analysis. However,
the hyper-parameters are also assumed to be unknown a priori and need to
be estimated from the data, as we shall see in the subsequent discussion.

The full GRW model (2e) was introduced in Jakeman and Young (1979,

1984): further discussion and practical examples appear in Young (1988),
Young et al. (1989), Young and Ng (1989), Ng and Young (1990). Note that,
in the case of the RW model, i.e.,

li.t = li,t−1 + η1i,t; li,t = pi,t, (3)

each parameter can be assumed to be time-invariant if the variance of the

white noise input η1i,t is set to zero. Then, the stochastic TVP setting re-
verts to the more normal, constant parameter TF model situation. In other
words, if RW models with zero variance white noise inputs are specified for
the model parameters, the recursive Instrumental Variable (IV) estimation
algorithm described below for the general stochastic TVP case will provide

recursive estimates that are identical to those obtained with the normal recur-
sive IV estimation algorithm for TF models with constant parameters (Young,
1984). Of course, there is some added value to the recursive solution even in
this situation, since the user is provided with the recursive estimates over the
whole interval t = 1, 2, . . . ,N . These can provide additional useful information

on the model: for example, they show how the estimates are converging and
can be used (e.g. Brown et al., 1975; Young, 1984) to detect both the pres-
ence of potential parametric change and possible over-parameterization (i.e.
the model contains too many parameters to provide unambiguous estimation
results).

Clearly other, more general and higher order stochastic processes could be
used to model the stochastic TVPs, provided such models can be identified
satisfactorily from the data. For example the higher order IRWs (Double and

2Interestingly, the LLT model can be considered simply as the combination of the simpler
RW and IRW models.



Stochastic, Dynamic Modelling and Signal Processing 79

Triple Integrated Random Walk (DIRW, TIRW), etc.), the Integrated or Dou-
ble Integrated AutoRegressive (IAR, DIAR: see Young, 1994) model, and even

more general processes (e.g. Pedregal and Young, 1996, 1998). However, the
more complex models introduce additional hyper-parameters that would have
to be well identified from the data and optimized, thus introducing potential
practical difficulties.

The idea of assuming that the model parameters evolve over time as nonsta-
tionary stochastic variables may seem complex at first sight but it is, in fact,

just a statistical device to allow for the estimation of parametric change. After
all, the assumption of the RW model is simply a means of introducing into
the estimation problem the freedom for the associated parameter to vary at
each sample in time by a small random amount defined by the variance of the
white noise input η1i,t. And the more complex GRW models in (2e) are just

a way of refining and adding to this freedom. In fact, it can be shown (Young
and Pedregal, 1998) that the GRW assumptions on the parameter variations
have an implicit but physically interpretable effect: they make the recursive
parameter estimates, at any sample time t, depend only on the local data in
the vicinity of this sample, with the selected GRW model defining the local

weighting effect. In the case of the RW model, for instance, this weighting
effect or ‘kernel’ has a Gaussian-like shape that applies maximum weight to
the current data with declining weight each side. And the ‘bandwidth’ of the
kernel is defined by the ratio of the variance of the white noise input η1i,t to
the residual variance σ2 (the Noise Variance Ratio (NVR): see later). This

can be related to the more explicit use of localized data weighting in meth-
ods such as locally weighted kernel regression (e.g. Holst et al., 1996; Young
and Pedregal, 1996) and ‘wavelet’ methods (e.g., Daubechies, 1988) that are
currently receiving so much attention in the statistical and signal processing
literature.

Having introduced the GRW models for the parameter variations, an overall
SS model can then be constructed straightforwardly by the aggregation of the
subsystem matrices defined in (2e), with the ‘observation’ equation defined by
the model equation (2b): i.e.,

Observation Equation: yt = Htxt + µt (i)

State Equations: xt = Fxt−1 + Gηt (ii).
(4a)

where,

xt=
[
xT

1,t xT
2,t . . . xT

n+m+1,t

]T
. (4b)

If p = 2(n+m+1), then F is a p×p block diagonal matrix with blocks defined
by the Fi matrices in (2e); G is a p × p block diagonal matrix with blocks

defined by the corresponding subsystem matrices Gi in (2e); and ηt is a p-
dimensional vector containing, in appropriate locations, the white noise input
vectors ηi,t (‘system disturbances’ in normal SS terminology) to each of the
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GRW models in (2e). These white noise inputs, which provide the stochastic
stimulus for parametric change in the model, are assumed to be independent

of the observation noise et and have a covariance matrix Q formed from the
combination of the individual covariance matrices Qη,i. Finally, Ht is a 1 × p
vector of the following form,

Ht = [−yt−1 0 − yt−2 0 . . . yt−n 0 ut−δ 0 . . . ut−δ−m 0] (4c)

that relates the scalar observation yt to the state variables defined by (4a)(ii),
so that it represents the DTF model (2b), with each parameter defined as a
GRW process. In the case of the scalar RW and AR(1) models, the alternate

zeros are simply omitted.

The SS formulation in equations (4) is particularly well suited for optimal
recursive estimation in which the time variable parameters (acting as surro-
gate ‘states’ in this SS formulation) are estimated sequentially whilst working
through the data in temporal order (usually termed ‘forward-pass filtering’).
In the off-line situation, where all the time series data are available for anal-

ysis, this filtering operation is accompanied by optimal recursive smoothing
(see e.g. Young, 1984; Young et al., 1998). Here, the estimates obtained from
the forward-pass, filtering algorithm are updated sequentially whilst working
through the data in reverse temporal order (usually termed ‘backward-pass
smoothing’) using a backwards-recursive Fixed Interval Smoothing (FIS) al-

gorithm, where the ‘fixed interval’ is the interval covered by the total sample
size N .3

The reason for this two-pass approach is easy to understand. The forward-
pass filtering estimate of xt, which defines the estimated TVPs, can be denoted
by x̂t|t (or simply x̂t, for convenience) since it represents the estimate at sample

t given only the data up to and including sampling instant t. However, under
our assumption that each of the parameters evolve stochastically according
to the equation (2e), a superior ‘smoothed’ estimate x̂t|N , exists and can be
generated by the FIS algorithm, in which the estimate at t is based on all the
data over the sampling interval t = 1, 2, . . . ,N . As a result, the phase lag

associated with the forward-pass filtering estimate (since it cannot anticipate
any change until the evidence for change in the series has been processed)
is eliminated on the backward smoothing pass. Thus, any variation in the
parameters is estimated as it occurs, without any lag effect (indeed, it may even
be anticipated if the smoothing effect is substantial, as it can be in high noise

situations). This proves particularly useful in operations such as interpolation
over gaps in the data, estimation and removal of individual components from
the data (signal extraction), and seasonal adjustment.

3On-line ‘Fixed Lag Smoothing’ is also possible, where the recursive estimation works
in a forward-pass, filtering mode but with smoothed estimates provided at every sampling
instant t over a finite interval of l samples into the past (i.e. over the interval t− l to t), but
this is not discussed here.
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In our previous publications on this topic, a standard algorithmic approach
to the problem has been utilized. This involves a the two step (prediction-

correction) version of the forward-pass recursive filtering algorithm; followed
by a version of the FIS algorithm which is stable numerically and which has a
structure allowing for the handling of missing observations and outliers. More
specifically, it is an adapted version (e.g. Young, 1988; Young et al., 1998 and
the references therein) combining Bryson and Ho’s recursion for the Lagrange
multipliers (Bryson and Ho, 1969) with the state update recursion of Norton

(1975, 1986). It should be noted that the recursive filtering algorithm is closely
related to the Kalman Filter (KF: 1960) and is often referred to as such. The
difference is that the Ht matrix in the present, recursive TVP estimation
context for the TF model (2b), is based on measured variables. In particular,
the output variables yt−i, i = 1, 2, . . . , n, in Ht are affected by the noise ξt

(the errors-in-variables problem); whereas, strictly, Ht in the KF has to be
composed of exactly known (but, if necessary, time variable), deterministic
coefficients.

This difference is important in the present TF context since it can be
shown that the TVP estimates obtained from the standard recursive filter-

ing/smoothing algorithm (see later, section 3.1) will be asymptotically biased
away from their ‘true’ values. The level of this bias is dependent on the
magnitude of the measurement noise and it can be problematic in high noise
situations, particularly if the parameters are physically meaningful (see e.g.
Young, 1984 for a discussion of this problem)4. For this reason, it is necessary

to modify the standard algorithm to avoid these biasing problems. This can
be achieved by attempting to model the noise µt in some manner (e.g. Nor-
ton, 1975, 1986). However, since µt is a complex, nonstationary, noise process,
its complete estimation is not straightforward. A new, alternative approach,
which does not require modelling µt, provided it is independent of the input

ut, is the recursive TVP Instrumental Variable (TVPIV) method.

In relation to the time series yt, t = 1, 2, . . . , N ,the recursive TVPIV filter-
ing/smoothing algorithm has the following form:

1. Forward-Pass Symmetric IV Equations (iterative)

Iterate the following recursive equations (5a) - 5(c) for j = 1, 2, . . . , IT , with
Ĥt = Ht for j = 1:

Prediction:

x̂t|t−1 = Fx̂t−1

P̂t|t−1 = FP̂t−1F
T + GQrG

T .

4It is less important if the model is to be used within a forecasting context since the
forecasts produced by the model are not biased (although they may not be statistically
efficient).



82 Young

Correction:

x̂t = x̂t|t−1 + P̂t|t−1Ĥ
T
t

[
1 + ĤtP̂t|t−1Ĥ

T
t

]−1
{ yt − Htx̂t|t−1 }

P̂t = P̂t|t−1 + P̂t|t−1Ĥ
T
t

[
1 + ĤtP̂t|t−1Ĥ

T
t

]−1
ĤtP̂t|t−1

(5a)

where,

Ĥt = [−x̂t−1, 0,−x̂t−2, 0, . . . , x̂t−n, 0, . . . , ut−δ , 0, . . . , ut−δ−m, 0] (5b)

x̂t =
B̂j−1(L, t)

Âj−1(L, t)
ut−δ. (5c)

The FIS algorithm is in the form of a backward recursion operating from the
end of the sample set to the beginning 5.

2. Backward-Pass Fixed Interval Smoothing IV (FISIV) equations
(single pass)

x̂t|N = F−1
[
x̂t+1|N + GQrG

T Lt

]

Lt =
[
I − P̂t+1Ĥ

T
t+1Ĥt+1

]T [
F̂T L̂t+1 − ĤT

t+1

{
yt+1 − Ĥt+1x̂t+1

}]
(5d)

P̂t|N = P̂t + P̂tF̂
T P̂−1

t+1|t

[
P̂t+1|N − P̂t+1|t

]
P̂−1

t+1|tFP̂t,

with LN = 0.

In these algorithms, the p×p Noise Variance Ratio (NVR) matrix Qr and the

p × p matrix P̂t are defined as follows,

Qr =
Q

σ2
; P̂t =

P∗
t

σ2
, (5e)

where P∗
t is the error covariance matrix associated with the state estimates

which, in the present TVP context, define the estimated uncertainty in the

parameters. For simplicity, it is normally assumed that the NVR matrix Qr is
diagonal, although this is not essential. The NVR parameters that characterize
Qr (as well as any other unknown hyper-parameters in the SS model (4)) are
unknown prior to the analysis and clearly need to be estimated on the basis
of the time series data yt and ut before the filtering and smoothing algorithms

can be utilized. The optimization of these hyper-parameters is discussed in
the next sub-section.

The main difference between the above algorithm (5a)–(5e) and the standard
filtering/smoothing algorithms (see later section 3.1) is the introduction of
‘hats’ on the Ĥt vector and the P̂t matrix, and the use of an iterative IV

5An alternative FIS algorithm is available in which, at each backwards recursion, the
estimate x̂t|N is based on an update of the filtering estimate x̂t (see Young, 1984). This can
be specified as an alternative to 5(d)
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solution in the forward-pass algorithm. In (5b) Ĥt is the IV vector, which is
used by the algorithm in the generation of all the P̂t terms and is the main

vehicle in removing the bias from the TVP estimates. The subscript j − 1 on
Âj−1(L, t) and B̂j−1(L, t) indicates that the estimated DTF polynomials in
the Auxiliary Model, (5c), which generates the instrumental variables x̂t that
appear in the definition of Ĥt, are updated in an iterative manner, starting
with the least squares estimates of these polynomials. Iteration is continued
for T iterations, until the forward pass (filtered) IV estimates of the TVPs are

no longer changing significantly: normally only 3 or 4 iterations are required.

This new recursive-iterative IV approach to time variable parameter esti-
mation is based on the IV algorithm for constant parameter TF models (e.g.
Young, 1984 and the prior references therein), except that the symmetric gain

version of the IV algorithm (Young, 1970b; 1984, p.183) is used, rather than
the more usual asymmetric version. This is necessary in order that the stan-
dard recursive FIS algorithm in (5d) can be used to generate the smoothed
estimates of the TVPs.

Maximum Likelihood (ML) Optimization of
Hyper-Parameters

The approach to ML optimization based on Prediction Error Decomposition
(PED) derives originally from the work of Schweppe (1965), who showed how

to generate likelihood functions for Gaussian signals using the Kalman filter
(see also Bryson and Ho, 1969; page 389). Its importance in the present UC
context was probably first recognized by Harvey (1981) and Kitagawa (1981).
Since then, it has become one of the two standard approaches to the problem
(the other being the Expectation and Minimization (EM) algorithm: Dempster

et al., 1977).

In the case of the simpler DARX model (Young, 1999a), Ĥt and P̂t in the
recursive TVP least squares estimation algorithm (5a) are replaced by Ht and
Pt, respectively, and iteration is not required. With given initial values for

the hyper-parameters, this algorithm will yield the one-step-ahead prediction
errors (also termed the ‘innovations’ or ‘recursive residuals’) εt, where

εt = yt − Htx̂t|t−1 t = 1, 2, . . . ,N. (6)

If the first p observations are regarded as fixed, the log-likelihood function
of yp+1, . . . , yN can be defined in terms of the standard ’regression’ form of

prediction error decomposition , i.e.,

log L =
−(N − p)

2
log(2π)− 1

2
log(σ2) − 1

2

N∑

t=p+1

log(1 + HtPt|t−1H
t
t)

−
1

2σ2

N∑

t=p+1

ε2
t

1 + HtPt|t−1H
T
t

, (7)
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where it can be shown that σ2(1 + HtPt|t−1H
T
t ) is the variance of εt, so that

the last term in (7) is based on the sum of squares of the normalized one-

step-ahead prediction errors. Now the ML estimate of σ2, conditional on the
hyper-parameters, is given by

σ̂2 =
1

N − p

N∑

t=p+1

ε2
t

1 + HtPt|t−1H
T
t

, (8)

so that it can be estimated in this manner and ‘concentrated out’ of the
expression (7) by substituting (8) into (7), to yield the following expression
for the ‘concentrated likelihood’:

log(Lc) = −
N − p

2
log(2π +1)−

1

2

N∑

t=p+1

log(1 +HtPt|t−1H
T
t )−

N − p

2
log(σ̂2)

(9)
which needs to be maximized with respect to the unknown hyper-parameters
in order to obtain their ML estimates.

Since (9) is nonlinear in the hyper-parameters, the likelihood maximization
needs to be carried out numerically. Consequently, it is more convenient to
remove the constant term (since it will play no part in the minimization) and
multiply (9) by −2, to yield:

log(Lc) =
N∑

t=p+1

log(1 + HtPt|t−1H
T
t ) + (N − p) log(σ2), (10)

which then needs to be minimized. This minimization is accomplished by ini-
tiating the optimization with the hyper-parameter estimates either selected by
the user or set to some default values (in both cases, ensuring that the resulting
optimization does not converge on a local minimum). The recursive TVP esti-
mation algorithm is used repeatedly to generate the one step ahead prediction

errors εt and, thence, the log-likelihood value in (10) associated with the latest
selection of hyper-parameter estimates made by the optimization algorithm.
The optimization algorithm then adjusts its selection of hyper-parameter es-
timates in order to converge on those estimates that minimize (10). Further
details of this and alternative ML optimization procedures are given, for ex-

ample, in Harvey (1989) and Harvey and Peters (1990). Typical methods that
can be used for numerical optimization are the ‘fmins’ and ‘fminu’ functions
available in the MATLAB software system, or their equivalents, although more
complex and efficient procedures are available.

In the case of the DTF model, The same basic PED approach to ML opti-
mization can be used, but with Ht and Pt in equations (7) to (10) replaced
by Ĥt and P̂t, respectively. The equations formed in this manner can then be
considered as an IV version of PED and as an approximation to the standard
TVP regression version. This approximation is justified by the link between
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optimal IV estimation and the classical ML approach to TF model estima-
tion (Young and Jakeman, 1979; Young, 1984) arising from the theoretical

results of Pierce (1972). Its practical efficacy is demonstrated in the following
simulation example.

Simulation Example 1

As a simple example of DTF modelling, consider the estimation of the param-
eters in the following first order TVP model:

xt =
b0

1 + a1,tz−1
ut−2 ut = N(0, 6.25)

yt = xt + ξt ξt = N(0, 2.56),

or, written in the form of equation (2a):

yt =
b0

1 + a1,t
ut−2 + ξt

where the b0 = 0.5 is constant and a1,t varies sinusoidally, as 0.9 sin(0.02t).
Estimation is based on the measurements of yt and ut, t = 1, 2, . . . , 2000, shown
in the upper panels of Figure 1; the lower panel shows the variation of a1,t. It

will be noted that the overall noise/signal ratio on the output measurement
yt is high (0.71 by variance; 0.84 by standard deviation).

It is assumed that no information is available on the variation of the param-

eters and so RW models are chosen for both of the two unknown parameters.
ML optimization of the NVRs, as described in the previous subsection, then
yields Qr = diag[0.00105 1.905× 10−20], where it will be noted that the NVR
for the b0 parameter is insignificantly different from zero, indicating that the
parameter is identified as being time invariant. This shows how, quite objec-

tively, the ML optimization is able to identify the relative temporal variability
of the model parameters from the input-output data, without any other a pri-
ori information. The FIS estimated TVP â1,t|N is shown in Figures 2 and 3
(upper panels), where it is compared with the DARX estimates (lower pan-
els). The superiority of the DTF estimates is particularly clear in Figure 2:

not only are the DTF estimates much better than the equivalent DARX esti-
mates, but the estimated standard errors (shown dashed) are more realistic.
As in the case of similar situations with constant parameter models, the least
squares DARX standard errors are too optimistic and, in contrast to the DTF
standard errors, they do not encompass the true variation of the parameters.

The DTF model with these estimated parameters explains the data well: the
coefficient of determination (COD) based on the simulated model output com-
pared with the noise free output is R2

T = 0.93 (93% of the data explained by
the TVP model); whilst for the DARX model, this is reduced to R2

T = 0.85.
The model residuals (innovations) for the DTF model are also superior: they
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Figure 1. Simulated DTF model. Top panel: noisy output. Middle panel: noise free

output and additive noise (+15). Lower panel: variation of a1,t parameter

have an approximately normal amplitude distribution; and, as required, both
the autocorrelation function (acf) and the cross correlation function (ccf) be-

tween the residuals and the input ut, are insignificant at all lags. In contrast,
the ccf for the DARX model residuals shows significant correlation with ut at
some lags.

The advantage of the complete, off-line FIS estimation in relation to forward-
pass (filtering) estimation is illustrated in the upper panel of Figure 3, which
compares a 250 sample section of the FIS estimates for the DTF model (full

line) with both the actual variation (dashed line) and the forward pass (IV,
filtered) estimates generated by algorithm (5a) at the final iteration. In the
lower panel, similar results are shown for the DARX estimates. It is clear that
the FIS estimates in the DTF case are very close to the actual values and
that, as expected, the associated forward pass (IV, filtered) DTF estimates

are much less smooth and have a pronounced lag. Similar characteristics can
be observed for the DARX smoothed and filtered estimates but, in addition,
they also show clear evidence of the deleterious least squares biasing effects. A
measure of the overall estimation accuracy is the COD for the error between



Stochastic, Dynamic Modelling and Signal Processing 87

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-1

0

1

Actual (dashed), DTF(IV) Estimate (full)

T
V

P

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-1

0

1

Actual (dashed), DARX(LS) Estimate (full)

Time (samples)

T
V

P

Figure 2. Simulated DTF model. Top panel: FISIV estimate of a1,t (full line)

compared with actual variation (dashed), with standard error bound shown dotted.

Lower panel: biased least squares FIS estimate of the TVP under the assumption of

that the model is DARX (lines as for upper panel)

the estimated and actual TVPs: in the case of the DTF model, this yields an
R2

T = 0.96 (i.e. 96% of the actual variation in the parameter explained by the
TVP estimate) for the FIS estimates, and a much lower R2

T = 0.85 for the
associated IV filtered estimates. For the DARX model, the values are lower

still at R2
T = 0.80 and R2

T = 0.70, respectively.

Note finally, in this example, that the b0 parameter has been kept constant
to show how the ML hyper-parameter optimization is able to detect this fact
(without the provision or use of any a priori information) and so inform the
DTF recursive algorithm (5) that b0 is time-invariant. However, if both pa-
rameters are allowed to vary in a similar manner (e.g. a1,t sinusoidal, as here,

and b0,t with a similar frequency, cosine variation between 0.9 and −0.9), then
the associated NVRs are optimized as Qr= diag [0.00101 0.00232], showing
that the ML optimization has found strong evidence of temporal changes in
both parameters. As a result, they are both estimated well (although, as might
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Figure 3. Simulated DTF model. Top panel: FISIV (full line) and forward-pass

filtered (dotted line) estimates of a1,t compared with the actual variation (dashed).

Lower panel: biased least squares estimates of a1,t under the assumption of that the

model is DARX (lines as for upper panel)

be expected, there is some deterioration in the â1,t estimate, when compared
with the above results: see Young and McKenna, 1999).

3 SDP Transfer Function Models

As we have seen above, the approach to TVP estimation discussed in the last
section works very well in situations where the parameters are slowly varying

when compared to the observed temporal variation in the measured system
inputs and outputs. Although such DARX and DTF models are nonlinear
systems, since the same inputs, injected at different times, will elicit quite
different output responses, the resultant nonlinearity is fairly mild. It is only
when the parameters are varying at a rate commensurate with that of the

system variables themselves that the model behaves in a heavily nonlinear
or even chaotic manner. We will refer to State Dependent Parameter (SDP)
models of this type as State Dependent parameter ARX (SDARX) and State
Dependent parameter TF (SDTF) models respectively. The rest of the chapter
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will show how these types of model can be used to represent a wide variety of
nonlinear stochastic systems and time series.

3.1 SDARX Estimation

The SDARX model equation takes the following form,

yt = zT
t pt + et et = N(0, σ2), (11a)

where now

zT
t = [−yt−1 − yt−2 · · · − yt−n ut−δ · · · ut−δ−m]

pt = [a1(χt)a2(χt) · · · an(χt)b0(χt) · · · bm(χt)]
T ,

(11b)

while ai(χt), i = 1, 2, . . . , n and bj(χt), j = 0, 2, . . . ,m are the state dependent
parameters, which are assumed to be functions of a non-minimal state vector

χT
t =

[
zT

t UT
t

]
. Here Ut = [U1,t U2,t · · · Ur,t]

T is a vector of other variables,

not necessarily direct functions of yt and ut that may affect the relationship
between these two primary variables (see Young, 1993a; Young and Beven,
1994).

The simpler signal topology for this ‘affine’ model (see Co, 1996) means that

FIS estimation can be based on the standard recursive least squares (RLS)
filtering/smoothing equations (e.g. Young, 1984, 1999a): i.e. the following
RLS form of the algorithm (5a)–(5e):

1. Forward Pass Recursive LS Equations (single pass)

Prediction:

x̂t|t−1 = Fx̂t−1

P̂t|t−1 = FP̂t−1F
T + GQrG

T .

Correction:

x̂t = x̂t|t−1 + Pt|t−1H
T
t

[
1 + HtPt|t−1H

T
t

]−1 {
yt − Htx̂t|t−1

}
.

Pt = Pt|t−1 −Pt|t−1H
T
t

[
1 = HtPt|t−1H

T
t

]1
HtPt|t−1

2. Backward Pass IV Smoothing Equations

x̂t|N = F−1
[
x̂t+1|N + GQrG

TLt

]

Lt =
[
I− Pt+1H

T
t+1Ht+1

]T [
FTLt+1 − HT

t+1 { yt+1 −Ht+1x̂t+1 }
]

Pt|N = Pt + PtF
TP−1

t+1|N

[
Pt+1|N − Pt=1|t

]
P−1

t+1|tFPt,

LN = 0.
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Since the parameter vector pt is potentially state-dependent, it may vary at
a rate commensurate with the temporal variations in yt, ut and Ui,t, and so it

cannot be assumed that the simple GRW model (2e) is appropriate to describe
the parametric variation over time. At first sight, it would appear that the
stochastic state space model should include prior information on the nature
of the parameter variation, if the TVP estimation methodology discussed in
previous sections is to work satisfactorily. Fortunately, it is possible to remove
this requirement if we resort to the rather unusual procedure, at least within

a time series context, of sorting the data in a non-temporal order. Then, if the
ordering is chosen so that the SDP variations associated with the sorted series
are smoother and less rapid, it is more likely that a simple GRW process can
be utilized to describe their evolution.

For example, if the time series are sorted in some common ‘ascending order

of magnitude’ manner (i.e. the sort operation in MATLAB), then the rapid
natural variations in yt and ut are effectively eliminated from the data and
replaced, in the sorted data space, by much smoother and less rapid variations.
And if the SDP’s are, indeed, related to these variables, then they will be sim-
ilarly affected by the sorting. Following FIS estimation, however, these SDP

estimates can be ‘unsorted’ (a trivial unsort operation to reverse MATLAB’s
sort) and their true, rapid variation will become apparent. Of course, the na-
ture of the sorting will affect the estimation and it seems likely that there will
be an optimum sorting which results in minimum variance estimates. How-
ever, such optimum sorting will naturally depend upon the nature of the state

dependency and its definition would require some sort of iterative estimation
procedure. In practical terms, therefore, the common ascending order sorting
and un-sorting operations seem the most straightforward and will be utilized
here.

One obvious requirement with this new approach to SDP estimation is that

the sorting of data, prior to FIS estimation, must be common to all of the
variables in the relationship (11a). If an ascending order strategy is selected,
therefore, it is necessary to decide upon which variable in the model the sorting
should be based. The simplest strategy is to sort according to the ascending
order of the ‘dependent’ variable yt. Depending upon the nature of each SDP

in the vector pt, however, a single variable sorting strategy, such of this, may
not produce satisfactory results. If this is the case, then a more complicated,
but still straightforward, ‘backfitting’ procedure can be exploited. Here, each
parameter is estimated in turn, based on the ‘modified dependent variable’
series obtained by subtracting all the other terms on the right hand side of

(11a) from yt. At each such backfitting iteration, the sorting can then be based
on the single variable associated with the current SDP being estimated.

Since the SDP estimates resulting from this backfitting algorithm are them-
selves time series, it will be noted that the algorithm constitutes a special
form of non-parametric estimation and, as such, can be compared with other
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non-parametric methods, such as the Generalized Additive Modelling (GAM)
approach of Hastie and Tibshirani (1996). However, in both conceptual and

algorithmic terms, the SDP approach described here is significantly different
from this earlier approach and seems more appropriate to the estimation of
nonlinear, stochastic, dynamic models. Moreover, the recursive methodology,
on which SDP estimation is based, is couched in optimal maximum likelihood
terms that seem more elegant and flexible than the scatter-plot smoothing
procedures used by Hastie, Tibshirani and others.

As previously, let pt = [p1,t p2,t . . . pn+m+1,t]
T , with the pi,t, i = 1, 2, . . . , n+

m + 1, relating to the TF model parameters ai,t and bj,t through (11b).The

backfitting algorithm for the SDP model (11) then takes the following form:

Backfitting Algorithm for SDP Models

1. Assume that FIS estimation has yielded prior TVP estimates p̂0
i,t|N , i =

1, 2, · · · , m + n + 1 of the SDPs. 6

2. Iterate: i = 1, 2, · · · ,m + n + 1; k = 1, 2, · · · , kc

(i) form the modified dependent variable yi
t = yt −

∑
j 6=i zj,t.p̂

k
j,t|N

(ii) sort7 both yi
t and zi,t according to the ascending order of zi,t

(iii) obtain an FIS estimate p̂k
i,t|N of pi,t in the modified dependent vari-

able relationship yi
t = pi,t.zi,t

3. Continue 2. (each time forming the modified dependent variable and
then sorting according to the current right hand side variable zi,t, prior
to FIS estimation), until iteration kc, when the individual SDPs (which

are each time-series of length N) have not changed significantly according
to some chosen criterion. The smoothing hyper-parameters required for
FIS estimation at each stage are optimized by Maximum Likelihood
(ML), as explained earlier in section 2.1 and discussed further below.

Note that the ML optimization can be carried out in various ways: after every
complete iteration (each involving m+n+1 FIS operations) until convergence
is achieved; only at the initial complete iteration, with the hyper-parameters

maintained at these values for the rest of the backfitting; or just on the first two
iterations. The latter choice seems most satisfactory in practice, since very
little improvement in convergence occurs if optimization is continued after
this stage. Normally, convergence is completed after only a few iterations,
although it can be more lengthy in some circumstances (see later discussion

in the Conclusions, section 5).

6As a default, these can be simply the constant least squares parameter estimates, since
the convergence of the backfitting procedure is not too sensitive to the prior estimates,
provided they are reasonable: see simulation example 2 below

7depending on the nature of the state dependency, sorting may need to be with respect
to another variable in χt
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Simulation Example 2

As a simulation example of SDARX modelling, consider the following forced

logistic growth equation,

yt = 2.0yt−1 − 2.0y2
t−1 + ut + et ut = N(0, 0.08) et = N(0, 0.008) (12a)

or,
yt = a1(yt−1). yt−1 + b0(ut). ut + et (12b)

where,
a1(yt−1) = 2.0 − 2.0yt−1 b0(ut) = 1.0 ∀t, (12c)

Here, ut is a measured input and et is white ‘system’ noise. The unforced
equivalent of this model (i.e. ut = 0 for all t: see simulation example 3) is, in

fact, the example used by the author in the first publication on SDP modelling
(Young, 1978) although, at that time, the more powerful FIS algorithms de-
scribed in this chapter had not been developed and simple recursive (filtering)
estimation was utilized.

The estimation is based on 1000 samples of ut and yt, a 100 sample segment

of which (for clarity) is shown in Figure 4. This is a fairly low noise situation
with about 10% noise level (by standard deviation). ML optimization at
the second iteration yields an NVR matrix Qr = diag[0.000357 2.5 × 10−17],
showing how the optimization has, once again, identified that the parameter
b0(ut) associated with the input ut is constant and that only the ‘lag’ parameter

a1(yt−1) is varying. This value of Qr is then utilized for the subsequent 3
iterations of the backfitting procedure that leads to convergence of the SDP
estimates.

The results obtained in this manner are shown in Figures 5 and 6. Fig. 5
provides plots of the estimated parameter variation against the associated non-

minimal state variable, in each case. The left hand panel shows the estimated
relationship between â1,t|N = â1(yt−1 | N) and yt−1; while the right hand panel

shows the estimated b̂0,t|N = b̂0(ut | N) as a function of ut. As expected, these

correspond to those used in the simulated model: â1(yt−1 | N) is a clear linear
function of yt−1 with slope and intercept close to –2 and 2, respectively, in
correspondence with equation (12c); while b̂0(ut | N) is constant for all t,
at an estimated value close to unity. The actual values of the parameters are
shown as dashed lines and the standard error bounds are shown dotted. Figure

6 presents the associated estimates of the nonlinear functions: f̂1(yt−1) =
â1(yt−1 | N). yt−1 and f̂2(ut) = b̂0(ut | N). ut, again with actual values shown
dashed and the standard error bounds show dotted.

Figure 7 shows results similar to those in Figure 5, again based on a 1000
sample data set, but with a much higher noise level of 69% by standard devia-

tion (48% by variance). Although the uncertainty on the estimates is greater,
as would be expected, the general nature of the state dependent relationships is
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Figure 4. Simulated forced logistic growth model. Noise-free output (full line); noisy

output (dashed line); and noise (+0.8) above

still clear and the identification of a forced logistic growth equation is quite un-
ambiguous. In this noisy situation, the NVR matrix Qr= diag[9.89×10−7 0.0]

3.2 SDTF Estimation

In the SDTF model, it is assumed that noise can enter as either system or
measurement noise, or both. For example, in the case of the forced logistic
equation (12), it could take the form:

xt = 2.0xt−1 − 2.0x2
t−1 + ut + et ut = N(0, 0.08) et = N(0, 0.008)

yt = xt + ξt ξt = N(0, 0.08)
(13a)

or,
yt = a1(yt−1). yt−1 + b0(ut). ut + ζt (13b)

where,
a1(yt−1) = 2.0 − 2.0yt−1 b0(ut) = 1.0 ∀t, (13c)

and the noise ζt is a complex nonlinear function of et, ξt and yt. In this situa-
tion, estimates obtained under the assumption that the model is of the simpler
SDARX form are nominally biased to a level dependent on the noise/signal
ratio. Fortunately, however, this bias is often fairly small, even for quite high
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Figure 5. Simulated forced logistic growth model. Left panel: FIS estimate

â1(yt−1|N) vs yt−1. Right panel: FIS estimate b̂o(ut|N) vs ut. True values shown as

dashed lines and standard error bands shown as dotted lines.

noise levels and, in consequence, it does not interfere substantially with the
identification of any state dependent relationships (note that the analysis is

aimed at identifying the form of the nonlinearity and more efficient statistical
estimation follows this identification step). For example, in the above exam-
ple, the estimation results for a measurement noise level similar to that of the
system noise level used to obtain the results in Figure 7 (69% by standard
deviation; 48% by variance) are quite acceptable and only a little worse than

those shown in Figure 7.

Nevertheless, it would be advantageous if a truly bias-free estimation method
was available in the SDTF model case and research is continuing on the de-
velopment of an IV backfitting algorithm which exploits the methodology dis-
cussed above. The main problem with such an approach is in maintaining the

stability of the auxiliary model (see equation (5c)) that generates the instru-
mental variables: in the case of nonlinear models with chaotic properties, for
example, only small uncertainties can lead to wide differences in response and
possible instability. Consequently, other approaches that extend the model to
include (SDP) noise terms are also being investigated.



Stochastic, Dynamic Modelling and Signal Processing 95

0.4 0.5 0.6
0.45

0.46

0.47

0.48

0.49

0.5

0.51
FIS Estimated Nonlinearity

y(t-1)

f{
y(

t-
1)

}

-0.2 -0.1 0 0.1 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
FIS Estimated Input Linear Function

u(t)

f{
u(

t)
}

Figure 6. Simulated forced logistic growth model. Left panel: FIS estimate of

feedback nonlinearity f̂1(yt−1). Right panel: FIS estimate of input nonlinearity
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lines.

Final Parametric Estimation

If any underlying parametric state dependency can be identified in non-para-

metric form using the recursive estimation methods discussed in previous sec-
tions, then it is often possible to continue further and parameterize the identi-
fied nonlinear relationships in terms of a finite set of constant parameters. For
example, given the non-parametric estimation results shown in Figures 5, 6
and 7, it is clear that the forced logistic growth equation, with three unknown

parameters, provides a parsimonious representation of the data. It is straight-
forward, therefore, to obtain estimates of these parameters by simply fitting
appropriate parameterized functions to the estimated state dependent rela-
tionships using weighted or ordinary least squares (WLS: see Young, 1993a,
1998a; Young and Beven, 1994). In this case, the WLS estimates of the two pa-

rameters of the linear relationship in (12c) obtained from the low noise results
(Figure 5) are: 2.002(0.0013) and −2.004(0.0025). The corresponding esti-
mates in the high noise case (Figure 7) are: 2.039(0.008) and −2.08(0.14); and
similar results are obtained in the SDTF case. However, it is more satisfactory
to use ML estimation of the parameters in (12c) directly from the data. In the
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Figure 7. Simulated forced logistic growth model. As for Figure 5 but with higher

level of noise on the data

low noise case, this yields 2.0332(0.008), −2.0679(0.017) and 0.9813(0.008);

while in the high noise case, the estimates are 2.0375(0.036), −2.1485(0.075)
and 0.9834(0.033). So, in all cases, the estimates are very good (although with
signs of very small positive bias) and the finally estimated model produces re-
sponses that are insignificantly different from noise free output of the actual
system, even in the high noise case. This is shown in Figure 8, where the error

shown above (+0.8) is between the model output and the noise-free output.
The noisy output on which the estimation is based is shown with circle points.

3.3 Estimation of Purely Stochastic Systems

A special example of the SDP model (11) is the following State Dependent
parameter Auto-Regressive (SDAR) model:

yt = −a1,tyt−1 − a2,tyt−2 − · · · − an,tyt−n + et (14a)

or
yt = zT

t pt + et, (14b)
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Figure 8 .Simulated forced logistic growth model: final parametric estimation

results. Comparison of estimated model output (full line) and noise free output

(dashed), with the error (+0.8) shown above. The circle points show the noisy

measured output used in the estimation.

where
zT

t = [−yt−1 − yt−2 · · · − yt−n]

pt = [a1(χt) a2(χt) · · · an(χt)]
T ,

(14c)

Clearly, the same SDARX estimation methods discussed previously can be
applied to this model, a simple example of which is the chaotic version of
the logistic equation. Typical simulation results for this model are discussed
below.

Simulation Example 3

In order to consider the effects of measurement noise, the following Noisy
SDAR (NSDAR) version of the chaotic logistic growth model (cf. equations
(12)) will be used in this example:

xt = 4.0xt−1 − 4.0x2
t−1 + et et = N(0, 0.0064)

yt = xt + ξt ξt = N(0, 0.0012)
(15a)

or
yt = a1(yt−1). yt−1 + ζt a1(yt−1) = 4.0 − 4.0yt−1. (15b)
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As in equation (13b), the noise ζt is a complex nonlinear function of et, ξt and
yt, and the noise level is about 10% (by standard deviation). As expected,

without this measurement noise present, SDP estimation is straightforward
with excellent, low variance SDP estimates that identify the nature of the
nonlinearity without any difficulty.

Even with the measurement noise, this is a simpler estimation problem than
in the forced logistic growth model since there is only one SDP, a1(yt−1), and
ML optimization of the associated scalar NVR quickly yields Qr = 0.000016.

The subsequent SDP estimation results are illustrated in Figure 9, where the
top left hand panel shows the FIS estimated nonlinear function with its char-
acteristic quadratic shape; while the top right hand panel shows the estimated
state dependency of the SDP estimate â1(yt−1 | N). In both plots, the true
relationship is shown as a dashed line, while the estimated standard error

bounds are shown dotted.

The most notable feature of the results in Figure 9 is the larger errors in
the SDP estimate at low values of yt−1. Since the measurement noise variance
is constant, this is the region where the measurement noise is having its most
deleterious biasing effect. Even with these errors, however, the WLS estimates

of the parameters (3.884(0.111) and −3.857(0.135), respectively) are quite
close to the true values (4 and −4). The results are better still, however, if
the noise is itself made state dependent, in the sense that it is set proportional
to the signal level (i.e. ξsd

t = [xt/max(xt)]. ξt). This is a common situation
with real data and it significantly reduces the noise effect at low signal levels

where the bias is largest. As a result, the WLS estimates are improved to
3.960(0.013) and −3.946(0.016), respectively. Indeed, in this state dependent
noise situation, the results are still good even if the variance of ξt is doubled,
so that the noise level on the data is visibly quite large, as shown in Figure
10. The resulting SDP estimation results are presented in the lower panels of

Figure 9, which identify clearly that the data were generated by the logistic
model with chaos inducing parameter values.

4 Further Examples

In this section, we present two further examples. The first is another, more
difficult simulation example based on the so-called Cosine Map model. The
second is a brief description of a practical example: namely the analysis of the
famous set of times series data on the Australian sheep blowfly Lucilia Cup-
rina by Nicholson (1954). This example is described in more detail elsewhere

(Young, 1998a; Young and Fawcett, 1999). Other, practical examples, in a
variety of application areas from the environment to economics, are described
in Young (1993a, 1996, 1998a,b, 1999a; Young and Beven, 1994; Young and
Pedregal, 1997, 1999; Young et al, 1996).
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Figure 9. Simulated chaotic logistic model. Left panels: estimated nonlinear

functions with ordinary (upper) and state-dependent (lower) noise. Right panels:

estimated state dependent parameters with ordinary (upper) and state-dependent

(lower) noise

4.1 Identification and Estimation of the Cosine Map Model

The cosine map model (e.g. Zhan-Qian and Smith, 1998) takes the form

yt = cos(2.8yt−1) + 0.3yt−2 + et et = N(0, 0.01), (16)

and a typical 2000 sample simulation of the model is presented in Figure
11, which shows the time response in the upper panel and the phase plane
(yt ∼ yt−1) plot in the lower panel.

In the latter graph, the noise free response is shown as a full line with the
noisy response plotted as dots. This a typical stochastic model that exhibits
underlying chaotic response characteristics. It provides a testing example for
the SDP approach, however, because it is not in the assumed affine form: in
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Figure 10. Simulated chaotic logistic model. Noisy (full line) and noise-free (dashed

line) output, with the state-dependent noise (+1.2) shown above

particular, the SDP term a1(yt−1). yt−1 in the most appropriate SDAR model,

yt = a1(yt−1). yt−1 + a2(yt−2). yt−2 + et et = N(0, σ2), (17)

is not able to represent the equivalent term cos(2.8yt−1) in (16) exactly, since
cos(2.8yt−1)/yt−1 has a singularity at yt−1 = 0. Despite this difficulty, SDAR
estimation yields excellent results, as illustrated in Figures 12 to 14. These

were obtained with the ML optimized NVR matrix Qr = diag[0.0057 1.28 ×
10−7] and it is clear, yet again, that the optimization has successfully identified
that the potential state dependency resides in the first lag parameter a1,t =
a1(yt−1), while the second lag parameter a2,t = a2(yt−2) is effectively time-
invariant.

Figure 12 shows the FIS estimate of the cosine nonlinearity subsequent to

the convergence of the backfitting procedure, which took 6 iterations in this
case. Except for the region around the singularity at yt−1 = 0 (see below),
the estimation is very good. The associated â2(yt−2 | N) = 0.291(0.0038),
for all t, is estimated as being time-invariant despite the fact that the NVR,
Qr(2, 2) = 1.28 × 10−7, is not too small in this case. Figure 13 compares

the actual, simulated phase plane plot for the data used in the estimation
(left hand panel) with a similar plot based on data from a typical random
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Figure 13. Simulated cosine map model. Comparison of the phase-plane plot for the

data used in the estimation (left panel) with the phase-plane obtained from a

random realization of the estimated SDAR model

realization of the SDAR model (right hand panel). Similar agreement is found
in both the time plots of the two series and the histograms.

Finally, Figure 14 compares the FIS estimate â1(yt−1 | N), plotted as a func-
tion of yt−1, with the theoretical function given by a1(yt−1) = cos(2.8yt−1)/yt−1

(which migrates to ±∞ at the point yt−1 = 0). Over the most important region
−0.1 > yt−1 > 0.1, the estimate is very accurate. Not surprisingly, it becomes
inaccurate close to the singularity, but the algorithm is robust enough to han-

dle this well, without impairing the SDP estimates elsewhere. And the overall
cosine shape of the nonlinear function is clearly estimated accurately in Figure
12.

Finally, on the basis of the above SDP results, the form of the nonlinear
equation is identified correctly as:

yt = α cos(βyt−1) + γyt−2 + et, (18)

and the optimized ML estimates of the, now constant, parameters α, β and γ

in this model are α̂ = 0.998(0.004), β̂ = 2.797(0.004) and γ̂ = 0.303(0.003).

4.2 The Nicholson Blowfly Data Revisited

Figure 15 is the best known example of the data collected so laboriously by
Nicholson (1954) in his investigation of the Australian sheep blowfly Lucilia
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Cuprina. It is clear that, in this particular experiment where the food (liver)

supplied to the blowflies was limited to 0.5g per day, the adult blowfly pop-
ulation yt (upper graph) and the eggs laid per day by the blowflies ut (lower
graph) vary in an apparently systematic fashion that is redolent of nonlinear,
limit cycle behaviour. Not surprisingly, these data have received much atten-
tion in the scientific literature (e.g. May, 1973, 1976; Banks, 1994; Gurney et

al., 1980; and the references therein).

In contrast to the analysis described in the previous references, however,
the SDP modelling approach used here makes no a priori assumptions about
the nature of the blowfly system but starts with a relatively non-prejudicial
analysis of the data, recognising only that the eggs and blowfly series are

causally related in some manner. The data in Figure 15 are sampled daily8

and the most obvious relationship between ut and yt, namely the blowfly
response to the egg production rate, seems quite linear and can be described

8The data shown in Figure 15 have been digitized at a daily sampling interval from
the graphical plots in Nicholson’s paper. The original data, which are no longer available
(McNeil, 1996), were collected every two days.
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Figure 15. The Nicholson blowfly data example. Upper panel: daily numbers of

adult blowflies. Lower panel: numbers of eggs laid per day.

well by the following first order, constant parameter, discrete-time TF:

yt =
b0

1 + a1z−1
ut−δ + ξt (19a)

or
yt = a1yt−1 + b0ut−δ + ηt, (19b)

where the identified time delay of δ = 15 days accounts for the development of
the eggs through a larval stage, prior to the emergence of the adult blowflies.
The estimates of the parameters and their standard errors are obtained by

constant parameter SRIV estimation (e.g. Young, 1984) as b̂0 = 0.865(0.031)
and â1 = 0.759(0.01). This simple linear model explains the experimental
data very well with R2

T = 0.86 and the model residuals, with ξt modelled as
a constant parameter, AR(3) process, satisfy the usual statistical diagnostic
tests.

But the modelling story does not end with this linear model of the ‘forward-
path’ dynamics: of much more interest is the nature of the ’feedback-path’
dynamics, namely the mechanism by which the blowflies produce their eggs.
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In contrast to the forward-path, this mechanism is obviously nonlinear, with
the blowflies producing eggs only when their numbers are low and the food

supply per blowfly is plentiful. There are two obvious ways in which the data
can be analyzed to infer the nature of these nonlinear feedback dynamics. Most
straightforwardly, the model (19) can be modified directly to acknowledge that
the egg production rate ut is a nonlinear function of the blowfly population
yt: this then yields a SDAR-type model with lag terms in yt and yt−δ.

Alternatively, since the time delay in the system is large, it is possible to
investigate the feedback-path dynamics separately by considering directly the
relationship between yt, now considered as the ‘input’ in the feedback path,
and ut, as the output, i.e.,

ut = b0(yt). yt + et. (20)

In other words, we are able to investigate the presence of a simple static
nonlinearity in the feedback path that has direct ecological significance. SDP
estimation yields the estimate b̂0(yt | N) shown in Figure 16 as a function of yt,
with the standard error bounds shown dotted. Also shown as a dash-dot line is

the WLS estimate of the nonlinearity based on the following exponential-type
parameterization:

ut = g. yt. f(yt) + et f(yt) = exp


 −1

N0
fd
yt


 et = N(0, σ2), (21)

where fd is the food supplied per day to the blowfly colony (here 0.5g); while
g and N0 are unknown parameters with WLS estimates of ĝ = 4.916(0.26) and
N0 = 1451(94), respectively. The results in Figure 16 were obtained with an
optimized NVR = 8.16 × 10−9.

Other parameterizations than (21) are clearly possible (e.g. Young, 1998a;
Young and Fawcett, 1999) but this particular one was chosen here because
it conforms to the prior analysis of Gurney et al. (1980). In particular, the
present model, i.e.,

yt = a1yt−1 + g. yt−δ. exp


 −1

N0
fd
yt


 + µt, (22)

where µt represents the overall residual coloured noise, is closely related to
the deterministic, continuous-time differential equation suggested by Gurney
et al. However, their analysis is deterministic and only semi-quantitative,
in the sense that they do not use statistical identification and estimation at
all. Rather, they simply speculate on the form of this nonlinear system and

show that, for a range of parameter values, its general, deterministic dynamic
behaviour conforms reasonably with that exhibited by the Nicholson data.

Having identified a suitable nonlinear model for the blowfly data in (22), it
is now possible to move on to the final ML estimation stage in the analysis. In
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this case, the nature of the coloured noise on the data requires that the model
(22) is enhanced to include stochastic elements (Young and Fawcett, 1999).
ML optimization of the resulting stochastic model yields the following result:

xt = 0.818xt−1 + ut−15 + ξt

ut = 4.63xt. exp

(
−1

13920.5
xt

)

ξt = 1.137ξt−1 − 0.491ξt−2 + εt

yt = xt + et et = N(0, σ2),

(23)

where σ2 = 1.52 × 105 and εt = N(0, 44.5σ2). In this ML optimization
stage, the model (23) is formulated as the associated 17th order, discrete-
time, stochastic state equation (15 orders account for the pure ‘larval’ time

delay and 2 represent the noise dynamics). The optimization is then performed
using prediction error decomposition based on a state dependent parameter
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implementation of the Kalman filter that does not require linearization (Young
and Fawcett, 1999). The nonlinearity associated with this model is shown as
the dashed line in Figure 16 and we see that it is similar to the WLS estimate
from the non-parametric estimation stage in the identification analysis, laying
well within the standard error bounds.

The residuals of the model (23) have satisfactory correlation properties but
they are very heteroscedastic (clearly dependent on the blowfly population).

Also, the Hessian associated with the parameter and hyper-parameter esti-
mates suggests that some of the parameters have quite large standard errors.
Despite this, the model performs well in forecasting and validation tests. Fig-
ure 17, for example, provides typical forecasting results, with one step-ahead
forecasts up to the 200th day and true, multi-step ex-ante forecasts thereafter.

The explicit inclusion of fd in (22) and (23) is useful because it allows us
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to evaluate the ecological realism of the model still further by examining its
prediction of what should happen if the food supply is modified. In particular,

Nicholson (1954) showed experimentally that, when the food supply was re-
duced from 0.5g per day to 0.1g per day, the average adult population dropped
from 2520 to 527. In the case of the model (23) the average populations in
these two same situations are 2657 and 548 respectively; a remarkable level
of agreement in the circumstances (since the average values here are based on
the deterministic limit cycle data produced by (23) when the stochastic in-

puts are removed, rather than the actual data). Certainly this result provides
a suitable initial validation of the model.

These results tend to confirm and further quantify the deterministic analysis
of Gurney et al.. However, the statistical diagnostics and associated stochastic
simulations suggest that the stochastic model (23) requires a little further

work, taking into account the heteroscedasticity and the poor definition of the
optimized parameters, before a fully satisfactory stochastic model is confirmed
for the blowfly data. Such future research could be based, for instance, on
Markov Chain Monte Carlo (MCMC) methods (e.g. Ruanaidh and Fitzgerald,
1996; Gamerman, 1997) or on a simpler stochastic approach, such as that

suggested recently by Durbin and Koopmans (1999), where the assumption of
Gaussian disturbances is not necessary. Nevertheless, as it stands, the model
(23) is clearly a reasonable one in predictive terms, as shown by the results in
Figure 17. And the fact that this forecasting performance is good, despite the
limitations of the stochastic model, is testament to the well known robustness

of the Kalman filter when it is used as a basis for forecasting.

5 Conclusions

Recursive estimation has a long and rich history: from its beginnings in

Gauss’s original derivation of recursive least squares (Gauss, 1823; see Ap-
pendix 2 of Young, 1984), through its re-discovery by Plackett (1950) and
Kalman’s seminal work on stochastic state estimation (Kalman, 1960), to the
burgeoning of research on recursive estimation in a whole range of different
academic disciplines between 1960 and the present. In the last ten years, how-

ever, the advent of fast computers and the desire of theorists to extend the
boundaries of time series analysis has led to an explosion of research on Monte
Carlo-based numerical methods, from either classical (e.g. Durbin and Koop-
man, 1999) or Bayesian (e.g. Ruanaidh and Fitzgerald, 1996; Gamerman,
1997) perspectives.

The motivation of this more recent research is clearly to extend the ‘Gaus-
sian’ methods of standard recursive estimation to non-Gaussian and nonlin-
ear time series, using models in which the stochastic inputs are non-Gaussian.
But models of non-Gaussian and nonlinear processes do not necessarily require
the assumption of non-Gaussian inputs. As we have seen in this chapter, a
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fairly wide class of non-Gaussian and nonlinear time series can be represented
by time variable (TVP) and state dependent (SDP) parameter, nonlinear,

stochastic models with Gaussian inputs. When it is possible (and the methods
do seem quite widely applicable), this is clearly advantageous, since it allows
for the use well tried and robust algorithms that are computationally much
less demanding than even the ‘classical’ non-Gaussian methods (see Young,
1999c; Durbin and Koopman, 1999).

As far as the author is aware, the idea of SDP modelling originated in his
1978 paper on the modelling ofr badly defined dynamic systems (Young, 1978),
and was then taken up by Priestley in a series of papers and a book on the
subject (Priestley, 1988). These earlier publications do not, however, exploit
the power of recursive fixed interval smoothing (FIS), which provides the main

engine for the developments described in this Chapter. The combined Kalman
filter (KF) and FIS (or FISIV: see Section 2) algorithms, as used here, clearly
have a more powerful potential than their more conventional usage would sug-
gest. Moreover, the fact that these same algorithms can function with system
matrices characterized by time, or even state dependent parameters, extends

their range of applicability to a considerable extent. Thus, the non-parametric
models described in this chapter can provide the basis for rather novel non-
parametric or state dependent parameter KF–FIS design, with implications
for both modelling and nonlinear optimization based on prediction error de-
composition.

The fact that the FIS algorithm can function well as a non-parametric esti-
mator means that it provides a powerful, recursive alternative to other, more
conventional, methods of smoothing, such as regularization, smoothing splines,
kernel smoothers and locally weighted kernel regression (see Young and Pe-
dregal, 1998). It also provides a non-parametric method for transforming

random variables (e.g. Gaussian to non-Gaussian), or identifying the nature
of a parametric transform between random variables.

Finally, it is clear that the simulated and real examples presented in the
chapter, combined with those discussed in other cited references, demonstrate
the efficacy of the proposed SDP approach to modelling for a fairly wide and

practically useful class of nonlinear stochastic systems. However, the proposed
technique is relatively new and it raises a variety of interesting theoretical
questions and possibilities for extending the approach to an even richer class
of nonlinear stochastic systems. For example:

• How can the approach be extended to handle multivariable state depen-
dencies, where the SDPs may be functions of several state variables?

• What is the best method of handling the errors-in-variables problem
and the estimation bias that occurs when the proposed SDP modelling
approach is applied to errors-in-variables TF models? An Instrumental
variable (IV) method, such as that used successfully in the case of DTF
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models (section 2), has been devised to handle this problem in the case
of well-behaved nonlinear models. But alternative approaches will be

required in the case of sensitive chaotic models.

• Although no convergence problems have been encountered so far in the
evaluation of the proposed SDP estimation procedure, what conditions
are required for convergence of the backfitting procedure? Hastie and
Tibshirani (1996) use a similar backfitting procedure for estimation of
their Generalized Additive Model (GAM). It needs to be established

whether their conclusions as regards convergence (which are not entirely
persuasive, in any case) are applicable to the models and backfitting
procedure described in this chapter. Unlike the GAM, for instance, the
nonlinear functions in the SDP models are factorized into the product of
the SDP and the model variable; and the SDP is estimated by optimal

FIS smoothing (rather than the more conventional scatter-plot smooth-
ing used by Hastie and Tibshirani).

• The backfitting procedure does not provide complete covariance infor-
mation on the SDP estimates. Could this be distorting the standard
errors on the estimates (e.g. the standard errors in Figure 5 seem very
small)? In more general terms, what are the full theoretical statistical

properties of the SDP estimates obtained by backfitting?

• Finally, what are the identifiability conditions on the SDP models? It
is clear that problems analogous to collinearity in constant parameter
model estimation can occur and that backfitting convergence will be
affected by such problems. Also, in the case on input-output models,
the nature of the input signals will affect the identifiability of the model

parameters. It is necessary to explore these factors further and establish
what other factors may affect the indentifiability of the model.

Regardless of the answers to these questions, however, the SDP approach
to the identification of nonlinearities in stochastic systems appears to hold
great promise. In contrast to other approaches, such as neural networks and
NARMAX models, for example, it attempts to identify the type of nonlinearity

and, therefore, the form of the nonlinear model, prior to the estimation of
the parameters in the finally identified model. This helps to ensure that the
final nonlinear model is efficiently parameterized (parsimonious) and it should
avoid the over-parameterization that normally accompanies neural network
and, to a lesser extent, the ’black-box’ NARMAX models. Indeed, the SDP

approach has been developed as a primary tool in Data-Based Mechanistic
(DBM) modelling (e.g. Young, 1993a,b; 1998a,b, 1999b; Young and Beven,
1994; Young and Pedregal, 1997; and the prior references therein), where its
ability to obtain parametrically efficient and physically meaningful models is
essential.
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SDP estimation also provides a non-parametric model that can be useful
in its own right. As we have seen, the SDP model can be simulated easily in

programs such as Simulink, thus removing the need for the final parametric
estimation in some applications, such as simulation, forecasting and automatic
control. In the latter case, for instance, it is clearly possible to develop state
estimation and control system design methods based on this new class of
nonlinear models, in parametric or non-parametric form (the latter providing
a completely new way of considering control and estimation system design).

Research on such developments is continuing and has so far led to encouraging
initial results.
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Holst, U., Hössjer, O., Björklund, C., Ragnarsson, P. and Edner, H. (1996) ‘Locally
weighted least squares kernel regression and statistical evaluation of LIDAR mea-
surements’, Environmetrics 7 410-416.

Jakeman, A.J. and Young, P.C. (1979) ‘Recursive filtering and the inversion of ill-
posed causal problems’, CRES Report No. AS/R28/1979, Centre for Resource and
Environmental Studies, Australian National University.

Jakeman, A.J. and Young, P.C. (1984) ‘Recursive filtering and the inversion of ill-
posed causal problems’, Utilitas Mathematica 35 351-376.

Kalman, R.E. (1960) ‘A new approach to linear filtering and prediction problems’,
ASME Transactions Journal Basic Engineering 82D 35-45.

Kitagawa, G. (1981) ‘A non-stationary time series model and its fitting by a recursive
filter’, Jnl. of Time Series Anal. 2 103-116.

May, R.M. (1973) Stability and Complexity in Model Ecosystems, Princeton University
Press.

May, R.M. (ed.) (1976) Theoretical Ecology, Blackwell Science.

McNeil, D. (1996) Personal Communication.

Ng, C.N. and Young, P.C. (1990) ‘Recursive estimation and forecasting of nonstation-
ary time-series’, Jnl. of Forecasting 9 173-204.

Nicholson, A.J. (1954) ‘An outline of the dynamics of animal populations’, Australian
Zoological Jnl. 2 9-65.

Norton, J.P. (1975) ‘Optimal smoothing in the identification of linear time-varying
systems’, Proceedings Institute Electrical Engineers 122 663-668.

Norton, J.P. (1986) An Introduction to Identification, Academic Press.

Pedregal, D.J. and Young, P.C. (1996) ‘Modulated cycles, a new approach to mod-
elling seasonal/cyclical behaviour in unobserved component models’, Centre for Re-
search on Environmental Systems and Statistics (CRES), Tech. Note No. TR/145.

Pedregal, D.J. and Young, P.C. (1998) ‘Extensions of trend models in unobserved
component models’, Centre for Research on Environmental Systems and Statistics
(CRES), Tech. Note No. TR/156.

Pierce, D.A. (1972) ’Least squares estimation in dynamic disturbance time-series mod-
els’ Biometrika 59 73-78

Plackett, R.L. (1950) ‘Some theorems in least squares’, Biometrika 37 149-157.



Stochastic, Dynamic Modelling and Signal Processing 113

Priestley, M.B. (1988) Nonlinear and Nonstationary Time Series Analysis, Academic
Press.

Ruanaidh, J.J. and Fitzgerald, W.J. (1996) Numerical Bayesian Methods Applied to
Signal Processing, Springer.

Schweppe, F. (1965) ‘Evaluation of likelihood function for Gaussian signals’, IEEE
Transactions on Information Theory 11 61-70.

Young, P.C. (1969) ‘Applying parameter estimation to dynamic systems: Part l,
Theory’, Control Engineering, 16, 10, 119-125; ‘Part lI Applications’, 16, 11, 118-
124.

Young, P.C. (1970a) ‘An instrumental variable method for real-time identification of
a noisy process’, Automatica 6 271-287.

Young, P.C. (1970b) Differential equation error method of real-time process identifi-
cation, PhD Thesis, Cambridge University.

Young, P.C. (1978) ‘A general theory of modeling for badly defined dynamic sys-
tems’, in Modeling, Identification and Control in Environmental Systems, G.C.
Vansteenkiste (ed.), North Holland, 103-135.

Young, P.C. (1983) ‘The validity and credibility of models for badly defined systems’,
in Uncertainty and Forecasting of Water Quality, M.B. Beck and G. Van Straten
(eds.), Springer , 69-100.

Young, P.C. (1984) Recursive Estimation and Time-Series Analysis, Springer.

Young, P.C. (1988) ‘Recursive extrapolation, interpolation and smoothing of non-
stationary time series’, in Identification and System Parameter Estimation, C.F.
Chen (ed.), Pergamon Press, 33-44.

Young, P.C. (1993a) ‘Time variable and state dependent modelling of nonstationary
and nonlinear time series’, in Developments in Time Series Analysis, T. Subba Rao
(ed.), Chapman and Hall, 374-413.

Young, P.C. (1993b) Concise Encyclopedia of Environmental Systems, Pergamon
Press.

Young, P.C. (1994) ‘Time-variable parameter and trend estimation in non-stationary
economic time series’, Jnl. of Forecasting 13 179-210.

Young, P.C. (1996) ‘A general approach to identification, estimation and control for a
class of nonlinear dynamic systems’, in Identification in Engineering Systems, M.I.
Friswell and J.E. Mottershead (eds.), University of Wales, Swansea, 436-445.

Young, P.C. (1998a) ‘Data-based mechanistic modelling of environmental, ecological,
economic and engineering systems’, Environmental Modelling and Software 13 105-
122.

Young, P.C. (1998b) ‘Data-based mechanistic modelling of engineering systems’, Jour-
nal of Vibration and Control 4 5-28.

Young, P.C. (1999a) ‘Nonstationary time series analysis and forecasting’, Progress in
Environmental Science 1 3-48.

Young, P.C. (1999b) ‘Data-based mechanistic modelling , generalised sensitivity and
dominant mode analysis’, Computer Physics Communications 115 1-17.



114 Young

Young (1999c) ‘Comments on time series analysis of non-Gaussian observations based
on state space models from both classical and Bayesian perspectives’, Jnl. Royal
Stat. Soc., Series B 62, in press.

Young, P.C. and Beven, K.J. (1994) ‘Data-based mechanistic modelling and the
rainfall-flow nonlinearity’, Environmetrics 5 335-363.

Young, P.C. and Fawcett, C. (1999) ‘Data-based mechanistic modelling and the
Nicholson blowfly data’, Centre for Research on Environmental Systems and Statis-
tics (CRES), Tech. Note No. TR140.

Young, P.C. and Jakeman, A.J. (1979) ’Refined instrumental variable methods of
recursive time-series analysis: part I, single input single output systems’ Int. Jnl.
of Control 29 1-30.

Young, P.C. and Lees, M.J. (1993) ‘The Active Mixing Volume (AMV): a new concept
in modelling environmental systems’, Chapter 1 in Statistics for the Environment,
V. Barnett and K.F. Turkman (eds.), Wiley, 3-44 .

Young, P.C. and McKenna, P. (1999) ‘An instrumental variable approach to recursive
fixed interval smoothing and the estimation of time variable parameter transfer
function models’, Centre for Research on Environmental Systems and Statistics
(CRES), Tech. Note No. TR141.

Young, P.C. and Minchin, P. (1991) ‘Environmetric time-series analysis: modelling
natural systems from experimental time-series data’, Int. Jnl. Biol. Macromol.
13 190-201.

Young, P.C. and Ng, C.N. (1989) ‘Variance intervention’, Jnl. of Forecasting 8 399-
416.

Young, P.C. and Pedregal, D.J. (1996) ‘Recursive fixed interval smoothing and the
evaluation of LIDAR measurements’, Environmetrics 7 417-427.

Young, P.C. and Pedregal, D.J. (1997) ‘Data-based mechanistic modelling’, in System
Dynamics in Economic and Financial Models, C. Heij, B. Hanzon and K. Paggman
(eds.), Wiley, 169-213.

Young, P.C. and Pedregal, D.J. (1998) ‘Recursive and en-bloc approaches to signal
extraction’, Journal of Applied Statistics 26 103-128.

Young, P.C. and Pedregal, D.J. (1999) ‘Macro-economic relativity: government spend-
ing, private investment and unemployment in the USA 1948-1998’, Jnl. Structural
Change and Economic Dynamics, in press.

Young, P.C. and Runkle, D.E. (1989) ‘Recursive estimation and modelling of nonsta-
tionary and nonlinear time series’, Adaptive Systems in Control and Signal Pro-
cessing 1, IFAC/Inst. Measurement and Control, London, 49–64.

Young, P.C., Lane, K., Ng, C.N. and Parker, D. (1991) ‘Recursive forecasting, smooth-
ing and seasonal adjustment of non-stationary environmental data’, Journal of
Forecasting 10 57-89.

Young, P.C., Ng, C.N. and Armitage, P.(1989) ‘A systems approach to economic fore-
casting and seasonal adjustment’, International Journal on Computers and Math-
ematics with Applications 18 481-501.

Young, P., Parkinson, S. and Lees, M. (1996) ‘Simplicity out of complexity: Occam’s
Razor revisited’, Journal Of Applied Statistics 23 165-210.



Stochastic, Dynamic Modelling and Signal Processing 115

Young, P.C., Pedregal, D.J. and Tych, W. (1998) ‘Dynamic harmonic regression’,
Centre for Research on Environmental Systems and Statistics (CRES), Tech. Note
No. TR96; in press Journal of Forecasting, 1999.

Zhan-Qian, J.L. and Smith, R.L. (1998) ‘Estimating local Lyapunov exponents by lo-
cal polynomial regression’, University of North Carolina, Department of Statistics,
http://www.stat.unc.edu./poscript/rs/chaos.


