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1. INTRODUCTION

One of the most interesting modelling problems in hydrology is the characterisation of the

nonlinear dynamic relationship between rainfall and runoff. This has received considerable

attention over the past thirty years, with mathematical and computer-based models ranging from

simple ‘black-box’ representations to complex, physically-based catchment models. Wheater et

al. (1993) have categorised such models into the following four, broad types.

• Metric Models,  which are based primarily on observational data and seek to characterise the

flow response largely on the basis of these data, using some form of statistical estimation or

optimisation (e.g. Young, 1986). These include purely black-box, time-series models, such

as the discrete-time transfer function or the neural network representations. Often, such

models derive from, or can be related to, the earlier unit hydrograph theory but this is not

always recognised overtly.

• Conceptual Models, which vary considerably in complexity but are normally based on the

representation of internal storages, as in the original Stanford Watershed Model of the

nineteen sixties (Crawford and Linsley, 1966), although the hypothesis of catchment-scale

response is sometimes included, as in TOPMODEL (Beven and Kirkby, 1979). The

essential feature of all these models, however, is that the model structure is specified a

priori, based on the hydrologist/modeller’s perception of the relative importance of the

component processes at work in the catchment; and then an attempt is made to ‘optimise’

the model parameters in some manner by ‘calibration’ against the available rainfall and flow

data.

• Physics-Based Models, in which the component processes within the models are

represented in a more classical, mathematical-physics form, based on continuum mechanics

solved in an approximate manner via finite difference or finite element spatio-temporal

discretisation methods. A well known example is the Système Hydrologique Européen
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(SHE) model (e.g. Abbot et al, 1986). The main problems with such models, which they

share to some degree with the larger conceptual models, are two-fold: first, the inability to

measure soil physical properties at the scale of the discretisation unit, particularly in relation

to sub-surface processes; and second, their complexity and consequent high dimensional

parameterisation. This latter problem makes objective optimisation and calibration virtually

impossible, since the model is normally so over-parameterised that the parameter values

cannot be uniquely identified and estimated against the available data.

• Hybrid Metric-Conceptual (HMC) Models, in which (normally quite simple) conceptual

models are identified and estimated against the available data to test hypotheses about the

structure of catchment scale hydrological storages and processes. In a very real sense, these

models are an attempt to combine the ability of Metric Models to efficiently characterise the

observational data in a statistical terms (the principle of parsimony: Box and Jenkins, 1970),

with the advantages of Conceptual Models that have a prescribed physical interpretation

within the current scientific paradigm.  

The models in the two middle categories, above, are often characterised by a large number of

unknown parameters that need to be estimated (‘optimised’ or ‘calibrated’) in some manner

against the observational rainfall-flow time series. Because the number of parameters is

normally very large in relation to the information content of the data, however, such models are

often over-parameterised and not normally identifiable, in the sense that it is impossible to

estimate their parameters uniquely without imposing prior restrictions on a large subset of the

parameter values prior to estimation (see e.g. Young et al, 1996). The author and his co-workers

have addressed these problems of over-parameterisation and poor identifiability associated with

large environmental models many times over the past quarter century (e.g. Young, 1978, 1983,

1992, 1993, 1998a,b, 1999; Young and Minchin, 1991; Young and Lees, 1993; Young and

Beven, 1994; Young et al, 1996; Shackley et al, 1998). And recently, Keith Beven and his co-

workers (e.g. Franks et al, 1997; Beven Chapter ? of this Volume) have used the term

equifinality to describe the consequences of such over-parameterisation and non-identifiability:

namely the existence of many different parameterisations and model structures that are all able

to explain the observed data equally well, so that no unique representation of the data can be

obtained within the prescribed model set.

There appear to be two main reasons for these identifiability problems. First, any limitations of

the observational data can be important, since the available time series may not be sufficiently

informative to allow for the estimation of a uniquely identifiable model form. In particular, the

inputs to a system may not be sufficiently exciting (see e.g. Young, 1984), in the sense that they

do not perturb the system sufficiently to allow for unambiguous estimation of all the model

parameters within an otherwise identifiable model structure. Secondly, even if the input does
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sufficiently excite the system, there are usually only a limited number of dynamic modes - the

dominant modes of the system - that are excited to any significant extent; and the observed

output of the system is dominated by their cumulative effect. The importance of this dominant

mode concept in model identification and estimation is illustrated by the example in Appendix 1,

which shows how the response of a 26th order simulation model can be duplicated with

exceptional accuracy (0.001% error by variance) by a much simpler 7th order dominant mode

model. This is typical of most high order linear systems and appears to carry over to nonlinear

systems. For example, Young et al (1996) and Young (1998b) have used similar analysis to

show how the response of high dimensional, nonlinear global carbon cycle simulation models

are accurately reproduced by differential equation models of much reduced order. This is also

reflected in other recent work on the simplification of global climate models (Hasselman et al,

1997; Hasselman, 1998).

In the above references, the author has stressed that dominant modal behaviour is a generic

property of dynamic systems (see Young et al, 1996 and the prior references therein) and that it

is probably the main reason for the limitation on the number of clearly identifiable parameters

that can be estimated from observational data. The largest order identifiable system that the

author has encountered from the analysis of real time series data, over the past forty years, is a

10th order differential equation model for the vibrations in a cantilever beam (Young, 1998a),

where the very low damping of the system results in four dominant complex modes and the

resulting model explains 99.74% of the experimental data. However, the identifiable order is

normally much lower than this and many previous rainfall-runoff modelling studies (e.g.

Kirkby, 1976; Hornberger et al, 1985; Jakeman and Hornberger, 1993; Young, 1993, 1998b;

Young and Beven, 1994; Young et al, 1997, 1998; Ye et al, 1998) suggest that a typical set of

rainfall-runoff observations contain only sufficient information to estimate up to a maximum of

less than ten parameters within simple, nonlinear dynamic models of dynamic order three or

less. In the rainfall-runoff example discussed later, for instance, there is clear evidence in the

data of only three dominant modes between the effective rainfall input and the flow response (as

described by a second order transfer function model with only five parameters): an

instantaneous component, in which rainfall affects flow within the daily sampling interval; a

‘quick’ mode with a time constant of 1.02 days; and a ‘slow’ mode, with a time constant of

12.2 days. Other, less significant aspects of the flow response are a seasonal evapo-

transpiration component, modelled as the response of a first order transfer function to

temperature variations; and a constant component. As a result, the total number of parameters,

including those associated with the nonlinear effective rainfall generation, is only nine.  

Given the above considerations, one has to seriously question whether it is possible to validate

the large Conceptual and Physics-Based models in any rigorous statistical sense, since non-

uniqueness is endemic in such models and their over-parameterisation presents formidable
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obstacles to the application of the available statistical modelling and numerical optimisation

procedures. Of course, this does not mean that model optimisation and limited forms of

validation are impossible: there are many examples where large models have been successfully

constructed and used to good effect in a variety of applications, from research studies to

environmental management and planning. But it does mean that unconstrained, holistic

optimisation of the model parameters in such large models is virtually impossible. It also limits

the more rigorous application of statistical diagnostic and testing procedures, of the kind

discussed in this Chapter.

Both the Metric and HMC approaches avoid these ‘large model’ problems to some extent but

the practical utility of the basic Metric model is limited by its lack of any clearly defined

physical interpretation. In this Chapter, therefore, attention is limited to the identification,

estimation and validation of HMC-type models, where the problems of identifiability and

optimisation are minimised (although, as we shall see, not eliminated) and the questions of

validity can at least be approached in a statistically meaningful manner. Within the category of

HMC models, however, two main approaches to modelling can be discerned; approaches which,

not surprisingly, can be related to the more general deductive and inductive2 approaches to

scientific inference that have been identified by philosophers of science from Francis Bacon

(1620), to Karl Popper (1959) and Thomas Kuhn (1962).

In the first hypothetico-deductive approach, the a priori conceptual model structure is

effectively a theory of hydrological behaviour based on the perception of the

hydrologist/modeller and is strongly conditioned by assumptions that derive from current

hydrological paradigms (e.g. the IHACRES model of Jakeman et al 1990). The alternative

Data-Based Mechanistic (DBM) approach is basically inductive, in the sense that it tries to

avoid theoretical preconceptions as much as possible in the initial stages of the analysis. In

particular, the model structure is not pre-specified by the modeller but, wherever possible,

inferred directly from the observational data in relation to a more general class of models. Only

then is the model interpreted in a physically meaningful manner, most often (but not always)

within the context of the current hydrological paradigm: e.g. the  models of rainfall-flow data in

Young (1993, 1998b), Young and Beven (1994) and Young et al (1997, 1998).

This physical interpretation is an essential element in all DBM modelling: no matter how well

the DBM model explains the data, it is only considered truly credible if it can be interpreted in

physically meaningful (albeit not always conventional - see below) terms. In this, the DBM

                                                
2 The term ‘induction’ is open to different interpretations and inductive methods have, for example, tended to
dominate many areas of social science. Here, we utilise the term more narrowly, within the context of statistical
inference, in order to differentiate the DBM approach from the related but more conventional hypothetico-
deductive approaches to HMC modelling.
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approach harks back to the father of modern statistical inference, Karl Friedrich Gauss, who

held that no hypothesis was satisfactory which rested on a formula and was not also a

consequence of physical conjecture. For this reason, Gauss abandoned his work on the

attraction between charged particles because he was unable to find a plausible physical

interpretation of the formula he had obtained for the relationship between the relative motion

and position of two particles. Of course, this lack of credibility does not preclude the purely

data-based model from being used for certain applications, such as forecasting and control,

where the physical interpretation may be relatively unimportant and where the success of

‘black-box’ models is well documented.

Since the DBM approach is inductive, it is not wedded as strongly to the current paradigms as

the hypothetico-deductive approach: indeed, its intention is always to respect these paradigms

but not allow them to dictate the structure of models (here rainfall-flow) if the data suggest

otherwise. In other words and to use a Kuhnian (Kuhn, 1962) interpretation of science, the

DBM approach encourages the continual questioning of current paradigms and rejoices in its

ability to promote paradigm change if this is supported by observational data. Examples of this

ability to promote paradigm change in an evolutionary manner, based primarily on the statistical

analysis of data, are the development of the Aggregated Dead Zone (ADZ) model for solute

transport in rivers (e.g. Beer and Young, 1983; Wallis et al, 1989; Young and Wallis, 1994);

and recent research on modelling the relationship between government spending, private capital

investment and unemployment in the USA during the last half century (Young and Pedregal,

1998, 1999).

Another important aspect of the IHACRES and DBM approaches to rainfall-flow modelling

relates to the objectives of the modelling exercise in each case. In the author’s opinion, the

search for a single, all encompassing model of any dynamic system is futile. Rather, the model

builder should be seeking a model that suits the nature of the study objectives. Of course, this

objective orientation does not have to be precisely defined, since a model can simultaneously

serve more than one purpose. But even more loosely defined objectives need to be considered

carefully before the modelling exercise begins. In this sense, we will see that the IHACRES and

DBM models of rainfall-flow processes appear to have overlapping but not identical objectives.

And these objectives affect, and have to be taken into account when evaluating, the overall

‘validity’ of the models.

On the basis of the above observations, the present chapter discusses the IHACRES and DBM

approaches to rainfall-flow modelling within the context of daily rainfall, flow and temperature

time series from the well known archive of data from the Coweeta Catchment (as collected over

many years by scientists at the U.S. Forest Service). Prior to this, however, some background to

the statistical methods utilised in the Chapter is presented. In particular, the basic aspects of
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statistical identification, estimation and validation are outlined and the DBM approach is

described briefly. The historical development of the IHACRES and DBM rainfall-flow models

and their inter-relationships are then discussed briefly, preparatory to the presentation of the

Coweeta example.  Four HMC models are considered in this example: the standard DBM

model; a modified version of the IHACRES model which is appropriate to the Coweeta data; the

Bedford-Ouse model, the progenitor of the IHACRES model; and a ‘simulation’ version of the

DBM model. All of these models are optimised using a similar numerical optimisation scheme

based on a 2000 sample set of daily data (see Appendix 2). Following optimisation, the models

are subjected to standard statistical diagnostic tests, prior to predictive validation on separate sets

of data.

This detailed modelling analysis of the Coweeta data helps to highlight certain important

questions about the wider definition of model validation within the HMC context; questions that

relate back to the different approaches and objectives of modelling discussed above, and are

considered briefly at the end of the Chapter. It is concluded that none of the HMC models can

be considered well validated at this time, although they can be deemed valid in the ‘conditional’

sense defined in this Chapter (i.e. they have not been falsified by the analysis here: which is

arguably all that can be achieved by models anyway).  In particular, the nature of the

nonlinearity in the models is not sufficiently well defined and requires more detailed scientific

study. Despite this, all the models appear to have advantages over alternative rainfall-flow

models and are undoubtedly useful in both scientific and predictive terms.

2. STATISTICAL IDENTIFICATION, ESTIMATION AND VALIDATION

The statistical approach to modelling assumes that the model is stochastic: in other words, no

matter how good the model and how low the noise on the observational data happens to be, a

certain level of uncertainty will remain after modelling has been completed.  Consequently, full

stochastic modelling requires that this uncertainty, which is associated with both the model

parameters and the stochastic inputs, should be quantified in some manner as an inherent part of

the modelling analysis. This statistical approach involves three main stages, as shown in fig.1:

identification of an appropriate, identifiable model structure; estimation (optimisation,

calibration) of the parameters that characterise this structure, using some form of estimation or

optimisation; and predictive validation of the model on data sets different to those used in the

model identification and estimation. In this section, we consider these three stages in order to set

the scene for the later analysis. This discussion is intentionally brief, however, since the topic is

so large that a comprehensive review is not possible in the present context.

INSERT Fig.1
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2.1 Structure and Order Identification

In the hypothetico-deductive approach to model building, the model constitutes a hypothesis or

‘theory of behaviour’ and it is normally selected beforehand, based on the current scientific

paradigm. However, the subsequent processes of model estimation and validation are often

considered as exercises in Popperian ‘falsification’ (Popper, 1959) and so the initial perceived

model structure may well be modified in the light of these. In the DBM approach, this

questioning of the hypothetical model is more overt and the identification stage is considered as

a most important and essential prelude to the later stages of model building. Nevertheless, in the

case of HMC models, both approaches make use of statistical identification procedures to some

extent. These usually involve the identification of the most appropriate model order, as defined

in dynamic system terms, although the model structure itself can be the subject of the analysis

if this is also considered to be ill-defined. In the DBM approach, for instance, the nature of

linearity and nonlinearity in the model is not assumed a priori  (unless there are good reasons

for such assumptions based on previous data-based modelling studies) but is identified from

the data using non-parametric and parametric statistical estimation methods. Once a suitable

model structure has been defined, there are a variety of statistical methods for identifying model

order, some of which are discussed later in connection with the Coweeta example (see Appendix

3). In general, however, they exploit some order identification statistics, such as the correlation-

based statistics popularised by Box and Jenkins (1970) and the well known Akaike Information

Criterion (AIC: Akaike, 1974).

2.2 Estimation (Optimisation)

Once the model structure and order have been identified, the parameters that characterise this

structure need to be estimated in some manner. There are many automatic methods of

estimation or optimisation available in this age of the digital computer, from the simplest,

deterministic procedures, usually based on the minimisation of least squares cost functions; to

more complex numerical optimisation methods based on statistical concepts, such as Maximum

Likelihood (ML). In general, the latter are more restricted, because of their underlying statistical

assumptions, but they provide a more thoughtful and reliable approach to statistical inference;

an approach which, when used correctly, includes the associated statistical diagnostic tests that

are considered so important in statistical inference. Moreover, the power of the modern

computer is such that some of these restrictions are gradually being lifted, with the advent of

stochastic approaches, such as Markov Chain Monte Carlo (MCMC) procedures. In the present

context, however, the estimation methods are based on nonlinear modifications of linear

Instrumental  Variable (IV) methods (e.g. Young, 1984 and the references therein).
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2.3 Conditional Validation

As the concluding section of this paper will stress, validation is a complex process and even its

definition is controversial. Some academics (e.g. Konikow and Brederhoeft, 1992, within a

ground-water context; Oreskes et al., 1994, in relation to the whole of the earth sciences)

question even the possibility of validating models. To some degree, however, these latter

arguments are rather philosophical and linked, in part, to questions of semantics: what is the

‘truth’; what is meant by terms such as validation, verification and confirmation?  etc.

Nevertheless, one specific, quantitative aspect of validation is widely accepted; namely predictive

validation, in which the predictive potential of the model is evaluated on data other than that used

in the identification and estimation stages of the analysis. While Oreskes et al. (1994) dismiss

this approach, which they term ‘calibration and verification’, their criticisms are rather weak and

appear to be based on a perception that “models almost invariably need additional tuning

during the verification stage”.  While some modellers may be unable to resist the temptation to

carry out such additional tuning, so negating the objectivity of the validation exercise, it is a

rather odd reason for calling the whole methodology into question. On the contrary, provided it

proves practically feasible, there seems no doubt that predictive validation is an essential pre-

requisite for any definition of model efficacy, if not validity.

It appears normal these days to follow the Popperian view of validation (Popper, 1959) and

consider it as a continuing process of ‘falsification’. Here, it is assumed that scientific theories

(models in the present context) can never be proven universally ‘true’; rather, they are ‘not yet

proven to be false’. In fig.1, it is suggested that this yields a model that is considered

‘conditionally valid’, in the sense that it can be assumed to represent the best theory of

behaviour currently available that has not yet been falsified. Thus, conditional predictive

validation means that the model has proven valid in this more narrow predictive sense. In the

rainfall-flow context, for example, it implies that, on the basis of the ‘new’ measurements of the

model inputs (e.g. rainfall, temperature or evaporation) from the validation data set, the model

produces flow predictions that are acceptable within the uncertainty bounds associated with the

model. Note this stress on the question of the inherent uncertainty in the estimated model: one

advantage of statistical estimation, of the kind considered in this chapter, is that the level of

uncertainty associated with the model parameters and the stochastic inputs is quantified in the

time series analysis. Consequently, the modeller should not be looking for perfect predictability

(which no-one expects anyway) but predictability which is consistent with the quantified

uncertainty associated with the model.

It  must be emphasised, of course, that conditional predictive validation is simply a useful

statistical diagnostic which ensures that the model has certain desirable properties. It is not a
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panacea and it certainly does not prove the complete validity of the model if, by this term, we

mean the ‘establishment of the truth’ (Oreskes et al., 1994). Models are, at best,

approximations of reality designed for some specific objective; and conditional predictive

validation merely shows that this approximation is satisfactory in this limited predictive sense.

As we point out in the concluding section of this chapter, this may well not satisfy all of our

requirements and the efficacy of the model will often need to be evaluated in much wider and

practical terms.

3. DATA-BASED MECHANISTIC (DBM) MODELLING

Previous publications (Beck and Young, 1975; Whitehead and Young, 1975; Young, 1978,

1983, 1992, 1993, 1998a,b,c; Young and Minchin, 1991; Young and Lees, 1993; Young and

Beven, 1994; Young et al, 1996; Young and Pedregal, 1998, 1999) map the evolution of the

DBM philosophy and its methodological underpinning in considerable detail, and so it will

suffice here to merely outline the main aspects of the approach.

The main stages in DBM model building are as follows:

1. The important first step is to define the objectives of the modelling exercise and to consider

the type of model that is most appropriate to meeting these objectives. The prior

assumptions about the form and structure of this model are kept at a minimum in order to

avoid the prejudicial imposition of untested perceptions about the nature and complexity of

the model needed to meet the defined objectives.

2. An appropriate model structure is identified by a process of objective statistical inference

applied directly to the time-series data and based on a given general class of linear transfer

function (TF) models whose parameters are allowed to vary over time, if this seems

necessary to satisfactorily explain the data.

3. If the model is identified as predominantly linear or piece-wise linear, then the constant

parameters that characterise the identified model structure in step 2. are estimated using

advanced methods of statistical estimation for dynamic systems. The methods used in the

present chapter are the Refined Instrumental Variable (RIV) and Simplified RIV (SRIV)

algorithms, which provide a robust approach to model identification and estimation that has

been well tested in practical applications over many years. Full details of these methods are

provided in Young and Jakeman (1979, 1980); Young, (1984, 1985). They are also outlined

in Young and Beven (1994) and Young et al. (1996).

4. If significant parameter variation is detected then the model parameters are estimated by the

application of an approach to time (or state) dependent parameter estimation based on

recursive Fixed Interval Smoothing (FIS): e.g. Young (1984, 1988, 1993, 1998a,b,c, 1999b);

Young and Beven (1994). Such parameter variation will tend to reflect nonstationary and
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nonlinear aspects of the observed system behaviour. In effect, the FIS algorithm provides a

method of non-parametric estimation, with the Time Variable Parameter (TVP) estimates

defining the non-parametric relationship, which then can often be interpreted in State-

Dependent Parameter (SDP) terms (see Young, 1993; Young and Beven, 1994; Young,

1998a,b,c). These methods are outlined in Appendix 2.

5. If nonlinear phenomena have been detected and identified in stage 4, the non-parametric

state dependent relationships are normally parameterised in a finite form and the resulting

nonlinear model is estimated using some form of numerical optimisation, such as nonlinear

least squares or ML based on prediction error decomposition (Schweppe, 1965). In the

present paper, this approach to nonlinear identification and estimation is required only to

define the nature of the effective rainfall nonlinearity, which appears only at the input to the

model, as described in subsequent sections. This approach is also outlined in Appendix 2.

6. Regardless of whether the model is identified and estimated in linear or nonlinear form, it is

only accepted as a credible representation of the system if, in addition to explaining the data

well, it also provides a description that has direct relevance to the physical reality of the

system under study. This is a most important aspect of DBM modelling and differentiates it

from more classical statistical modelling methodology.

7. Finally, the estimated model is tested in various ways to ensure that it is conditionally valid

in the sense discussed above. This involves standard statistical diagnostic tests for

stochastic, dynamic models, including analysis which ensures that the nonlinear effects have

been modelled adequately (e.g. Billings and Voon, 1986),  as well as exercises in predictive

validation  and stochastic sensitivity analysis (see the later example).

 

Of course, while step 6. should ensure that the model equations have an acceptable physical

interpretation, it does not guarantee that this interpretation will necessarily conform exactly with

the current scientific paradigms. Indeed, one of the most exciting, albeit controversial, aspects of

DBM models is that they can tend to question such paradigms. For example, DBM methods

have been applied very successfully to the characterisation of imperfect mixing in fluid flow

processes and, in the case of pollutant transport in rivers, have led to the development of the

Aggregated Dead Zone (ADZ) model (Beer and Young, 1983; Wallis et al., 1989). Despite its

initially unusual physical interpretation, the practical success of this ADZ model and its

formulation in terms of physically meaningful parameters, seriously questions certain aspects of

the ubiquitous Advection Dispersion Model (ADE) which preceded it as the most credible

theory of pollutant transport in stream channels (Young and Wallis, 1994).  
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4. THE BEDFORD-OUSE, IHACRES AND DBM MODELS

The IHACRES and DBM models have a common origin in the discrete-time rainfall-flow

model developed by the author and his colleagues for the Bedford-Ouse Study in the early

1970’s (Young, 1974; Whitehead and Young, 1975). This section introduces first  this seminal

model; and then discusses briefly the later development of the IHACRES and DBM models.

4.1 The Bedford-Ouse Model (BM)

This was probably the first HMC model to be suggested and it takes the following form:

yt =
B(z −1)

A(z −1)
ut + t       ;      t =1,2,..., N (1)

rt
∗ = rt

Tr −Tm

c
                              (i)

st = st −1 +
1

s

rt
∗ − st −1{ }                  (ii)

ut = st .rt                                        (iii)

 (2)

where,

A(z −1) =1 + a1z
−1 + ... + anz

−n      ;       B(z −1) = b0 + b1z
−1 + ... + bmz −m  

and z −i  is the backward shift operator: i.e. z −iy t = yt −i  Equation (1) is a linear Transfer

Function (TF) relationship between the effective rainfall (rainfall excess) input ut  and the

measured flow yt . This can be written in the following alternative equation form,
    
yt = −a1yt −1 − ... − any t −n + b0ut + b1ut −1 + ... + bmut −1 + t (3)

where  represents the potential presence of any pure advective time delay in the system;

t = t + a1 t −1 + ... + an t −n ; and t  represents uncertainty in the relationship arising from a

combination of measurement noise, the effects of other unmeasured inputs and modelling error.

Normally, t  is modelled as an AutoRegressive (AR) or AutoRegressive-Moving Average

(ARMA) stochastic process (see e.g. Box and Jenkins, 1970; Young, 1984).

The equations 2(i) to 2(iii) describe the assumed nonlinear relationship between the measured

rainfall rt  and ut , which takes the form of a multiplicative nonlinearity between rt  and a

measure of soil moisture st . This soil moisture variable can be considered as an unobserved

state of the system that has to be estimated from the data (see later discussion). The modified

rainfall input rt
∗ is a nonlinear function of the measured rainfall rt  and the mean monthly

temperature Tm , as defined in equation 2(i). Like the linear TF parameters ai ,i =1,2,...,n , and
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bj , j = 0,1,2,...,m ,  the nonlinear model parameters s ,Tr  and c ,  are all unknown a priori and

need to be estimated from the rainfall, flow and temperature measurements. In addition the TF

polynomial orders n and m (which are normally ≤ 3), and any associated time delay , need to

be identified as part of the identification and estimation procedure, which is discussed in the

next section of the Chapter.

The conceptual justification for the model defined by equations (1) and (2) is straightforward.

First, the linear part of the model, as represented by the TF model in equation (1), can be

considered in its alternative infinite dimensional, discrete-time ‘convolution equation’ form,

yt = gi
i =1

∞
∑ .ut −i + t (4)

which is obtained by simply dividing the numerator polynomial B(z -1) by the denominator

polynomial A(z −1). This form of the model is interesting because the coefficients gi ,i =1,2,...,∞
are the ordinates of the impulse response function; or, in hydrological terms, the associated

infinite dimensional unit hydrograph (IUH). The more conventional finite dimensional

approximation of the IUH (the Finite Impulse Response (FIR) in systems terms) is obtained

from the gi  by curtailing the number of these coefficients to only those that are numerically

significant. This interpretation demonstrates that the TF model is a parametrically efficient

(‘parsimonious’) representation of the unit hydrograph model which, given our comments in

the previous section, has important implications on the statistical identification and estimation of

the model.

Second, the nonlinear equations in (2) are an attempt to represent, in a simple manner, the soil-

moisture, groundwater and seasonal evapo-transpiration mechanisms in the system and modify

the rainfall to account for these effects. In this regard, equation 2(i) multiplies the ‘raw’ rainfall

measurements by a factor which is a function of the difference between a reference temperature

Tr  and the current monthly mean temperature Tm , thereby adjusting the rainfall to allow for

seasonal factors. This initially modified rainfall rt
∗ is then passed through the first order filter in

equation 2(ii), which has a time constant or residence time s . This can be conceptualised as a

catchment storage equation which yields a constantly changing index of catchment storage st

reflecting antecedent rainfall that has fallen on the catchment. In times of no rainfall, this index

will reduce in a manner defined by s ; while during high rainfall episodes it will increase

sharply in value. The final effective rainfall measure ut  is obtained as the product of st  and rt ,

so modifying the measured rainfall to reflect the temperature and antecedent rainfall effects.

Interpreted in these terms, the input nonlinearity can be considered as a refinement of the

conventional ‘antecedent precipitation index’ approach (e.g. Weyman, 1975) used in previous

rainfall-runoff models (since the dynamic equation 2(ii) yields st  as an exponentially-weighted
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measure of the input rt
∗  into the past, with the exponential decay defined by s ). The main

difference lies in the overall framework of the model and the fact that the model in (1) and (2) is

couched within a stochastic framework and so is identified and estimated using statistical

methods.

4.2 The IHACRES Model

The IHACRES model (Jakeman et al, 1990; Jakeman and Hornberger, 1993) is quite similar to

the Bedford-Ouse model, from which it was derived, but its conceptual basis is perceived to be

somewhat more acceptable in hydrological terms. The only differences lie in the nonlinear part

of the model, where the equations in (2) are replaced by the following:

s(Tt ) = s.exp 20 -Tt f[ ]                    (i)
st = c.st −1 +

1

s(Tt )
rt − st −1{ }                 (ii)

ut = st .rt                                               (iii)

 (2a)

Here, the main change relates to the time constant s(Tt ) in the storage equation 2a(ii) which, in

the BM model, is a time-invariant parameter estimated from the data. In 2a(ii), it is now a

nonlinear function of the temperature Tt , as defined by equation 2a(i). This temperature

dependent time constant s(Tt ), which now applies differential exponential weighting to the

antecedent rainfall rt , is inversely related to the rate at which catchment wetness declines (or

potential evapo-transpiration): this is arbitrarily defined as a constant s  at 20oC . The parameter

f  is a temperature modulation factor which accounts for the fluctuations in potential evapo-

traspiration and determines how s(Tt ) changes with temperature. Both parameters s  and f

are estimated from the data, while the parameter c is set so that the volume of the effective

rainfall (rainfall excess) is equal to the total stream flow volume over the estimation period of N

samples3.

4.3 The DBM Model

The nonlinear part of the DBM model is much simpler than in either of the two previous

models. Following the DBM approach discussed in the last section and the procedures outlined

in Appendix 2, it is based on non-parametric estimation from the data and takes the form,

 ut = c.yt rt (2b)

                                                
3 In the published IHACRES model, this parameter c  is selected by the modeller and appears in equation
2a(ii), but it performs the same function as here.
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In other words, the catchment storage term st  in the IHACRES model equation 2a(iii) is

replaced by the term yt . As pointed out in the above references, this relationship should not be

interpreted as saying that effective rainfall is physically a function of flow, which is obviously

impossible. Rather, the measured flow yt  is effectively acting here as an objectively identified

surrogate for the catchment storage st . This seems sensible from a hydrological standpoint,

since flow is clearly a function of the catchment storage and its pattern of temporal change is

likely to be similar. The power law appears in (2b) because it is identified objectively from the

data during the non-parametric estimation phase of the analysis. In fact, this has been

substantiated by subsequent research on the IHACRES model (e.g. Ye et al, 1998), which has

shown the advantage of incorporating such a power law. Consequently, later versions of the

IHACRES model replace 2a(iii) by ut = c.st rt , thus making the similarity between the two

models even more transparent.

It will be noted that the DBM model (equations (1) and (2b)) does not include any temperature

dependent terms and so, in this basic form, it cannot account for seasonal, transpiration effects.

Following the DBM approach, these should be identified and estimated from the data, rather

than included a priori , as in the Bedford-Ouse and IHACRES models. As we shall see later,

such analysis applied to the Coweeta data suggests strongly that the temperature dependency

enters through a separate TF relationship, so that the more general DBM model takes the form:

              

yt = b +
B1(z −1)

A1(z −1)
ut − 1

+
B2(z −1)

A2(z −1)
Tt − 2

+ t                (i)

ut = c.yt .rt                                                             (ii)

(2c)

where,

A1(z −1) =1 + a11z
−1 + ... + a1n1z

−n1   ;   B1(z
−1) = b10 + b11z

−1 + ... + b1m1z
−m1

A2(z −1) =1 + a21z
−1 + ... + a2n2z

−n2   ;   B2(z
−1) = b20 + b21z

−1 + ... + b2m 2z
−m 2

and b  is a constant or very slowly varying flow component, which seems to be present in the

Coweeta flow data and is probably due to deep aquifer effects of some kind.

4.4 The DBMS Model

Unfortunately, the simplification of the nonlinear relationships in the above DBM models  is

obtained at a cost. Although the models so defined can function very well indeed in a

forecasting context, they cannot be used directly for simulation purposes, where only the

rainfall and temperature measurements are used to generate purely simulated flow outputs (e.g.
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in applications such as off-line management, planning and ‘what-if’ studies). This arises

because the flow variable yt , which is not available in such studies, is required to generate the

effective rainfall via equations (2b) and 2c(ii). Related DBM simulation models can be

constructed, however, by introducing a catchment storage equation into the model that mirrors

the identified DBM model rainfall-flow dynamics but does not utilise the flow measurement

directly. The exact form of this storage equation cannot mimic the DBM model rainfall-flow

dynamics exactly, of course, and so it has to be identified from the data by comparing the

estimation results obtained with various possible approximations. In the case of the Coweeta

catchment data discussed in the next section, for example, this has yielded the following DBM

Simulation (DBMS) model:

              

yt = b + B1(z −1)
A1(z −1)

u
t − 1

+ B2(z −1)
A2(z −1)

T
t − 2

                      (i)

st = b +
g

1 + z −1 rt +
B2(z −1)
A2(z −1)

Tt − 2
                          (ii)

ut = c.st rt                                                               (iii)

(2d)

In equation 2d(ii), =1 − (1 s ), g and  are parameters optimised within the nonlinear storage

part of the model; while b , A2(z −1) and B2(z −1) are assumed to be the same as those estimated

in the linear TF part of the model 2d(i). In other words, since the effective rainfall (a direct

function of flow in the standard DBM model) is not available in this simulation mode of

solution, the storage equation 2d(ii) is an approximation of the rainfall flow equation in 2d(i)

but with the measured rainfall entering linearly through the first order TF g (1+ z −1). Here,

the simple first order TF form, with only two unknown parameters to be estimated ( g and ), is

necessary because the assumption of a higher order TF, such as B1(z −1) A1(z −1) in 2d(i), leads

to over-parameterisation and associated identifiability problems during optimisation.

In relation to the nonlinear storage equation in the IHACRES model, note that the two input

model in 2d(ii) effectively replaces equations (i) and (ii) of (2a) and the overall DBMS model,

excluding the model for the noise term t , has 11 parameters to be estimated, compared with 9

for the IHACRES model and 9 for the standard DBM. This suggests that either the IHACRES

is under-parameterised or the DBMS has too many parameters: this is discussed in the next

section.
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5. A PRACTICAL EXAMPLE: HMC MODELS OF RAINFALL-FLOW PROCESSES IN
    THE COWEETA CATCHMENT

Fig.2 is a plot of the rainfall, flow and temperature time series from the Coweeta catchment that

are used for model identification and estimation in this example: these are 2000 daily

measurements of each variable, from sample number 8310-10309 out of a full data set of 17532

daily samples. Independent one year long subsets, from sample 10310-10674 and 14310-

14674, respectively, are used for the predictive validation tests reported here, although these are

representative of the validation results obtained over all sections of the complete data set.

INSERT Fig.2

5.1 DBM Model Identification and Estimation

The first stage in DBM model identification confirms that the relationship between rainfall and

flow is nonlinear  and the non-parametric State Dependent Parameter (SDP) analysis, as

outlined in Appendix 2, yields the results shown in fig.3. This  is a plot of the estimated SDP

against the flow yt
∗ (where the star superscript indicates that the flow has been sorted in

ascending magnitude) and the FIS non-parametric estimate ˆ b 0,t |N  is shown as dots, with the

standard errors shown dashed  (see Appendix 2 for further explanation) . The full line curve is

the weighted least squares estimate of a power law relationship, which does not fit the data too

badly and confirms, to some extent, the results of previous analysis of data from other

catchments in the UK, Australia and the tropics (Young, 1993; Young and Beven, 1994; Young

et al., 1997, 1998; Ye et al., 1998; Young, 1998b; Chappell et al., 1999). It might be better, in

this case, to consider a two segment linear relationship, as used by Young (1993), rather than the

power law. However, selection of the latter has the advantage of maintaining continuity with

earlier work on both DBM and IHACRES models which have utilised such a relationship.

Nevertheless, it must be emphasised that further research on the nature of the nonlinearity is

required and it is clear that the power law relationship may not always be optimum.

INSERT Fig.3

Based on this power law parameterisation of the nonlinearity, the identification and estimation

analysis outlined in Appendix 2 yields the following DBM model, which is simply a special

example of equations (2c):
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yt = 2.05 +
0.170 − 0.118z −1 − 0.022z −2

1 +1.298z −1 − 0.347z −2 ut +
−0.0042z −6

1 − 0.97z −1 Tt + t

ut = c.yt
0.711.rt           ;           c = yt

t =1

t =N

∑ yt
0.711.rt

t =1

t =N

∑   
   

(5a)

where the noise term t  is modelled as an AR(5) process,

t =
1

1 − 0.269z −1 − 0.192z −2 − 0.062z −3 − 0.040z −4 − 0.056z −5 et   ;   var(et ) =1.46 (5b)

the parameter c is selected so that total effective rainfall ut  over the observation interval is equal

to the total flow yt∑ ; and Tt  is the temperature minus its mean value. The estimated covariance

matrices associated with the 3 component model parameters and the noise model are given

below:

Effective Rainfall - Flow TF

P(A1,B1) =10−3

0.9901 −0.8596 −0.0013 0.1983 −0.1173

−0.8596 0.7499 0.0016 −0.1735 0.1046

−0.0013 0.0016 0.0044 −0.0067 0.0026

0.1983 −0.1735 −0.0067 0.0527 −0.0308

−0.1173 0.1046 0.0026 −0.0308 0.0203

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

(5c)

Temperature - Flow TF

                 P(A2 ,B2 ) =10−5
0.6353 −0.0665

−0.0665 0.0093

 

 
 

 

 
 (5d)

Nonlinear Catchment Storage parameters

                     P( ,b) =10−4
1.8795 4.3312

4.3312 5.3894

 

 
 

 

 
 (5e)

   

Noise Process

 P(AR) =10−3

0.5025 −0.1375 −0.0983 −0.0366 −0.0278

−0.1375 0.5393 −0.1128 −0.0940 −0.0366

−0.0983 −0.1128 0.5559 −0.1128 −0.0985

−0.0366 −0.0940 −0.1128 0.5394 −0.1377

−0.0278 −0.0366 −0.0985 −0.1377 0.5032

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 



18

Fig. 4 compares the output of the deterministic part of the model (5a), ˆ y t ,  where,

ˆ y t = 2.05 +
0.170 − 0.118z −1 − 0.022z −2

1 +1.298z −1 − 0.347z −2 ut +
−0.0042z −6

1 − 0.97z −1 Tt

with the observed flow yt : clearly the data are fitted well with the coefficient of determination

Rt
2 = 0.91 (i.e. 91% of the flow data are explained by ˆ y t : see Appendix 3). After incorporating

the AR(5) noise model, the coefficient of determination based on the one-step-ahead prediction

errors R2 = 0.93. Fig.5 is a plot of the deterministic output from the temperature - flow model,
ˆ y 2, t  (see below and Appendix 2) compared with the residual yt − b − ˆ y 1,t  (dotted), where ˆ y 1,t  is

the deterministic output of the effective rainfall - flow model. This shows how well the

temperature - flow model explains the seasonal variations in flow due, presumably, to long term
evapo-transpiration effects. Note also the ‘spikes’ in the  residual yt − b − ˆ y 1,t , which suggests

that there are outliers in the data during high flow events (see later).

INSERT Figs.4 and 5

Figs.6 to 9 present the results of correlation analysis applied to the model residuals. Fig.6 is the

auto-correlation function (acf) of the deterministic model residuals yt − ˆ y t : it is clear that there is

considerable correlation in these residuals but, as shown in fig.7, the final stochastic residuals
ˆ e t  (the one-step-ahead prediction errors) are not correlated and subscribe to the assumption of

white noise4. However, the ‘spikes’ mentioned above are clear also on the plot of ˆ e t  in the top

panel of the figure and a histogram of the ˆ e t , coupled with tests for normality and a normal

probability plot, confirm that the amplitude distribution is far from Gaussian normality. Given

this observation, it is necessary to be careful about the interpretation of the covariance matrices

in (5c) to (5e), which are computed on the assumption of normally distributed residuals.

However, the matrices still provide an indication of the uncertainty on the estimates and are

useful in this regard for subsequent stochastic analysis, provided we bear in mind the

distortions that will arise from the non-normality .

Fig.8 shows the cross-correlation function (ccf) between ˆ e t  and the temperature input Tt :

although there is a larger correlation at lag zero, it falls only on the boundary of the significance

bands (dotted) and so we can assume that  ˆ e t  and ut  are reasonably uncorrelated, as required.

Finally, fig.9 is the ccf between ˆ e t  and the effective rainfall input ut : here, there is evidence of

just significant correlation at some lags, although the magnitude is always quite small. Apart

from the clear deviation from normality, this is the only way in which the model (5a) fails its

                                                
4 More precisely, the residual series constitutes ‘weak white noise’, in the sense that there is some
autocorrelation when the squared  or absolute values of the residuals are considered.  
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statistical diagnostic tests and these failures appear common in all rainfall-flow models that we

have investigated using these statistical diagnostic methods.

INSERT Figs 6 to 9

One of the main reasons for the correlation between the stochastic residuals ˆ e t  and ut , as well

as the non-normality of ˆ e t , is the presence of the ‘spikes’ mentioned above. Fig.10 is a plot of

ˆ e t  with the outliers (defined as values lying outside the ±3 standard deviations bound) marked

as circles . It is clear that there are numerous samples within the series ˆ e t  that appear to be

outliers in this sense, and these most often occur at times of high rainfall and flow when one

might expect measurement errors and extremes of behaviour to be present. One straightforward

approach, in this situation, would be to repeat the identification and estimation analysis under

the assumption that the outliers represent errors in the data and either should be given less

weight in the estimation or considered as missing samples. A related approach would be to

consider that the ˆ e t  are heteroscedastic (i.e. their variance is not the same at all samples) and

utilise some method of estimation which allows for this (e.g. Johnston and DiNardo, 1997).

These approaches have not been attempted in the present illustrative analysis, but it seems

unlikely that it would make a great difference to the final estimated model’s predictive

performance (although it would affect the parameter estimates). Unfortunately, other approaches

to the problem of non-normality, such as the use of Markov Chain Monte-Carlo (MCMC)

methods (e.g. Gamerman, 1997), involve new, relatively untried methodology and can be

computationally very intensive. However, the non-normality of the residuals in rainfall-flow

models is clearly significant and constitutes a suitable topic for future research.

INSERT Fig.10

5.2 Mechanistic Interpretation of the DBM Model

As discussed in Young (1992, 1998b) and following the procedure used in the previous

publications mentioned above, the TF part of the model (5a) can be written in the following

alternative form:

yt = 2.05 + 0.17 +
0.077

1 − 0.38z −1 +
0.026

1 − 0.92z −1

 
  

 
  u t +

−0.0042z −6

1 − 0.97z −1 Tt + t (5f)

Considering only the deterministic parts of this model, the deterministic output ˆ y t  is given by,

ˆ y t = 2.05 + ˆ y 1,t + ˆ y 2, t (5g)

where:
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ˆ y 1,t = 0.17 +
0.077

1 − 0.38z −1 +
0.026

1 − 0.92z −1

 
  

 
  u t     ;    ˆ y 2, t =

−0.0042z −6

1 − 0.97z −1 Tt

Here, the variables ˆ y 1,t  and  ˆ y 2, t  are, respectively, the modelled flow due to the effective rain and

the temperature effects, with the former TF decomposed into a three pathway, parallel flow

form. A systems diagram of the model in this decomposed parallel form is shown in fig. 11 and

the details of the decomposition are given below in Table 1.

Table 1
Instantaneous TF (A)

             Eig         SSG       TC    % of ˆ y 1,t  flow
               0           0.17     0.00          27.3

Fast Flow TF (B)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.38        0.12      1.02         19.9

Slow Flow TF (C)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.92        0.33     12.21        52.8

Slow Temperature (Seasonal) Effect (D)
             Eig         SSG       TC         TD
            0.97      - 0.14      32.9          6

Constant Base flow
2.05 ( ∀t)

Table 1. Eig denotes the eigenvalue associated with the component; SSG denotes steady state
gain; TC denotes time constant (residence time); TD denotes pure time delay.

We now see that one interpretation of the model (5a)5 is that the effective rainfall ut  reaches

the river and affects the flow via three pathways; and that the flow is also affected by the

prevailing temperature variations. This interpretation has the advantage that it makes reasonable

physical sense. In particular, it suggests that the river flow is composed of 5 components: a very

rapid instantaneous (i.e. within one day) effect; a ‘fast flow’ component with residence time

1.02 days, probably associated with surface processes; a ‘slow flow’ component with residence

time 12.21 days, probably associated with sub-surface and groundwater processes; and a very

slow, ‘base flow’ component in the form of a ‘constant flow’ of 2.05 mm, probably due to

deep aquifer effects and apparently constant over the 2000 days of data (but varying very slowly

over the whole 17532 data set). Note that the TF’s associated with ‘fast’ and ‘slow’ flow

parallel pathways can be interpreted directly as dynamic mass balance or storage equations (see

Young and Beven, 1994). The 5th, temperature dependent component (the temperature

variations about the mean passed through a TF with time constant 32.9 days) clearly accounts

                                                
5 This decomposition is not unique: serial and feedback decompositions are equally feasible in mathematical
system terms but the parallel decomposition seems most logical on physical grounds.
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for long term temperature dependent effects, such as those arising from evapo-transpiration

processes.

Fig.12 is a plot of the flow estimates associated with each of the parallel pathways. The

instantaneous effect is shown in the upper panel; the fast and slow flows below this; and the

temperature dependent effect in the lower panel. Fig.13 lumps these effects together: in the

upper panel is the sum of the instantaneous and fast flow components; while the cumulative

slow flows are plotted in the lower panel. The dashed line in this lower plot is the temperature

dependent component, showing how it dominates the slower flow components in the longer

term.

INSERT Figs.11, 12 and 13

5.3 Predictive Validation of the DBM Model

The model (5a) has been validated in a predictive sense, as discussed in earlier sections, by

applying it to two other, one year long, segments of the data: from samples 10310-10674 and

14310-14674, respectively. Over the first segment, the coefficients of determination are

RT
2 = 0.90 and R2 =0.91 , respectively; while over the second segment, they are

RT
2 = 0.92 and R2 =0.95 . Since both of these results show that the model, without any re-

estimation, continues to explain the data to a level commensurate with that obtained over the

original estimation period between samples 8310 to 10309, we can conclude that the model is

‘conditionally valid’ and can be used for forecasting applications. In such applications, the

model would be best transformed into discrete-time, stochastic state space form embedded

within a Kalman filter mechanism (see e.g. Young, 1984; Young et al, 1997; Young and Tomlin,

2000). However, while the predictive validation results obtained above engender confidence in

the model for such forecasting applications, it cannot be considered fully validated in a wider

sense, as discussed later in section 6.

5.4 The Effects of Uncertainty in the DBM Model

One final evaluation of the DBM model (5a) concerns the effects of the parametric uncertainty

on the mechanistic interpretation of the model. The easiest approach to such analysis is to utilise

Monte-Carlo Simulation (MCS) methods (see Young et al, 1996; Parkinson and Young, 1998;

Young, 1999a). Here, the model is simulated many times (here between 1000 and 5000 times)

with the model parameters for each ‘random realisation’ of this kind generated by randomly

sampling the parameters from their parent probability distribution functions (pdf’s). In the

present context, these pdf’s, are assumed to be multivariate Gaussian, with the mean values and
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covariance matrices shown in equations (5a) to (5e)6. Two types of output are obtained from

this analysis: first, a response analysis, where the model is perturbed by the actual measured

inputs used during the estimation (i.e. yt  , rt  and Tt  ), with the stochastic noise t   generated,

for each realisation, from independent samples of white noise, via equation (5b); and second, a

parametric analysis, where each realisation is used to calculate only the ‘derived’,

mechanistically meaningful parameters associated with the parallel flow decomposition. Typical

MCS results in the present example are presented in figs.14 to 16. These are not meant to be

comprehensive in any way: they are simply illustrative of the kind of uncertainty analysis that is

possible using stochastic simulation methods.

INSERT Figs.14 to 16

Fig.14 compares the mean of an ensemble of 1000 stochastic realisations (full line) with the

actual data  (circles) over the shorter period between samples 8550 and 8660, which is selected

to avoid congestion in the graph. This mean response is virtually identical to the deterministic

model output ˆ y t , as would be expected in this case. The dashed lines mark the envelope of the

ensemble and thus show the limits of the uncertainty propagation arising from the various

uncertain elements in the model. The measured response falls mainly within these bounds,

showing that the stochastic model provides a reasonable description of the data. Figs. 15 and 16

are typical of the results obtained from the parametric MCS analysis based on 5000 random

realisations: fig.15 shows the histograms of the residence time parameters for the slow and fast

parallel TF’s (see Table 1); while fig.16 displays the histograms of the partition percentages

associated with the parallel pathways, including the instantaneous flow effect. The ensemble

mean values agree almost exactly with the values of these parameters derived from the estimated

TF parameters, as listed in Table 1.

The sample distributions in figs. 15 show that the estimated slow pathway residence time is

much more uncertain than that of the fast pathway; and, while both show signs of minor

skewness towards larger values, that of the slow pathway is more pronounced. These results

make physical sense, since there is less information in the data on the dynamics of the slow

pathway over the sampling interval and it is also describing subsurface processes which are

likely to be less well defined. In the case of fig.16, there are some minor signs of skewness in

the fast and slow pathway partition percentages, with the former skewed towards higher and the

latter towards lower values. The instantaneous distribution seems quite symmetric.

                                                
6 Note the earlier comment on the non-normality of the model residuals. In this case, it means that the
covariance matrices will tend to underestimate the parametric uncertainty and this will naturally affect the
propagation of this uncertainty in the MCS analysis.
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5.5 Comparison of HMC Models

Similar analysis to that described in sections 5.1 to 5.4 has been carried out on the other HMC

models discussed in section 4 and some of the estimation results are reported in Appendix 4.

There are many ways in which the models can be compared and any one set of comparisons can

be misleading. However, the results shown in Table 2, which compares the coefficients of

determination RT
2 and R2 obtained for each model over the estimation and predictive validation

periods, provide a reasonable impression of the comparative performance in this example.

Table 2
Estimation

(8310-10309)
Validation 1

(10310-10674)
Validation 2

(14310-14674)
Validation 3: all
17532 samples

Model RT
2 R2 RT

2 R2 RT
2 R2 RT

2 R2

DBM 0.91 0.93 0.90 0.91 0.92 0.95 0.85 0.90
DBMS 0.86 0.88 0.87 0.90 0.90 0.92 0.82 0.87
IHACRES 0.82 0.86 0.89 0.91 0.87  0.90 0.82 0.87

BM 0.84 0.87 0.88 0.91 0.91  0.92 0.82 0.86
Best DBM DBM DBM DBM= DBM DBM DBM DBM

2nd Best DBMS DBMS IHACRES IHACRES
=

BM DBMS
=

DBM= DBM=

Table 2  Comparison of coefficients of determination of the HMC models: the equals (=) sign
shows that one or more model performed virtually the same

These results are also reflected in the statistical diagnostics. The DBM and DBMS models are

clearly superior in this regard: both satisfy most of the statistical requirements on the final

stochastic residuals ˆ e t , failing only marginally in relation to the ccf between these residuals and

the effective rainfall input, but with clearly non-normal ˆ e t . On the other hand, the IHACRES

and BM models only satisfy the acf requirement on their ˆ e t  series: they fail both of the ccf

requirements, with many significant violations of confidence bounds at a range of lags. As

expected, the distribution of the residuals is clearly non-normal with many outliers.

An indication of how well or badly the model parameters are defined in any nonlinear least

squares optimisation exercise is provided by how well the optimisation procedure converges,

combined with the resulting covariance properties of the estimates. Here again, there are

indications of some problems with the IHACRES and BM models. Whereas convergence is

rapid and well defined in the case of the DBM and DBMS models, neither of the other two

models converge under the same convergence criteria; and the Matlab algorithm leastsq, as used

for optimisation in these studies, reports difficulties during convergence for both models. The

covariance properties of the optimised estimates are also worse, with some ‘t’ values (the

estimated parameter divided by its standard error) noticeably lower in the case of the IHACRES

and BM models (although it is well known that the covariance properties obtained during

nonlinear numerical optimisation can be misleading).



24

One common aspect of all four models is the use of a TF model to describe the predominantly

linear relationship between the effective rainfall and flow. But, as pointed out previously, the TF

model is basically a parametrically efficient way of characterising the largely invariant, unit

hydrograph characteristics of the catchment, which is quantified in the present context by the

impulse response of the TF model.  These TF derived unit hydrographs for all four models are

compared in fig.17 and it is clear that they are all very similar: the initial responses, which are

dominated by the ‘quick flow’ component, are virtually identical; while the somewhat longer

tails of the IHACRES and BM hydrographs reflect the rather longer residence times of the

‘slow flow’ components in these cases (see Appendix 4). This is also confirmed by the TF-

based flow decomposition results shown in Table 3, where the partition percentages for all the

models are reasonably similar.

Table 3

Component Instantaneous (%) Fast (%) Slow (%)

DBM 27.3 19.9 52.8

DBMS 26.1 25.6 48.3

IHACRES 21.0 29.7 49.3

BM 18.4 25.0 56.6

Average 23.2±4.2 25.0±4.0 51.8±3.8

Table 3  Comparison of TF-based flow decomposition partition percentages for the HMC
models

These results are comforting in practical terms: they show that, although the four models are

rather different in the manner that they characterise the nonlinear catchment storage

characteristics, they are quite similar in their quantification of the underlying unit hydrograph

aspects of the catchment dynamics which are, of course, such an important icon in both the

theory and practice of hydrology.

INSERT Fig.17

Since the catchment storage part of all the four HMC models provides a nonlinear mechanism

for generating the effective rainfall series, it is interesting to compare the relationship between

the rainfall and effective rainfall series in each case. However, since this relationship is quite

complex, a simple graph of effective rainfall against measured rainfall takes the form of a

‘scatter plot’ and it is difficult to compare these plots in any meaningful manner. One approach

to this problem is to exploit the FIS approach to non-parametric estimation outlined in

Appendix 2 and estimate a smooth relationship between effective rainfall and measured rainfall

for each of the models. The results of this analysis, as shown in fig.18, reveal that there are quite

significant differences in the pattern of the transformation in each case: in particular, the DBM
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model nonlinear transform (full line) lies a little below the others (DBMS, dash-dot;

IHACRES, dotted; BM, dashed) for rainfall less than 45 mm; and above them for rainfall

greater than this. Moreover, this difference is  very significant for rainfall greater than 70 mm, as

we see in fig.19: this shows plots of the difference between the effective and measured rainfall

for all four models and the increased magnitude of the high rainfall events in the case of the

DBM model (upper plot) is obvious. It seems, therefore, that since the linear parts of the models

are reasonably well defined and quite similar, the superiority of the DBM model derives from

its superior definition of effective rainfall during the higher rainfall episodes.

INSERT Figs.18 and 19

Finally, it is necessary to ask why the DBM model performs significantly better than the other

three models. The answer is fairly obvious: the DBM modelling strategy has uncovered the fact

that the flow series itself provides a surrogate measure of catchment storage and so the model

is able to exploit this in the definition of the effective rainfall nonlinearity. In the other models,

on the other hand, the catchment storage is an entirely unobserved, latent variable, an estimate of

which is computed from the rainfall input using the conceptualised storage equations. The

differences between these other models lies mainly, therefore, in the nature of these storage

equations. The message from this result is also clear: a model should extract all of the useful

information in the observational data. If measured variables are available which provide either

direct (e.g. soil moisture or evapo-transpiration measurements) or indirect (e.g. the flow

measurement as a surrogate for catchment storage) quantification of important variables within

the model, they should be incorporated into the model wherever this is possible.

This does not mean, however, that the concept of unobserved (sometimes termed ‘latent’)

variables should be dismissed. On the contrary, it is essential in the present context for the

construction of models that are useful in a simulation context. Moreover, systems research has

shown how the definition and estimation of such latent state variables (state variable estimation

and reconstruction, as the in Kalman filter) provides a very powerful, general approach to

modelling stochastic dynamic systems.  Indeed, one obvious development of the HMC models

discussed in this paper is to incorporate them into such a state estimation framework for both

optimisation  and on-line purposes. This is discussed later in the Conclusions section 6.

5.6 Discussion

The results presented in previous sub-sections show that all of the HMC models considered

here perform reasonably well on the Coweeta catchment data. The DBM model (5a) is best in

statistical diagnostic and predictive validation terms, with its simulation version, DBMS, having

very similar diagnostics but not performing quite as well in the predictive validation tests.
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However, these DBMS validation results are not bad (see Table 2) and the model seems

marginally superior to the IHACRES and BM models in this regard. Although the latter two

models perform poorly in the diagnostic tests, their predictive validation results are quite

acceptable. Indeed, they could be used with some confidence in forecasting applications,

although they would probably be out-performed by the DBM model in most cases.

The only disadvantage of the DBM model is its inability to function directly in simulation

terms. In such applications, its simulation version, DBMS, would have to be used and, as shown

above, the differences between this version and both the IHACRES and BM models is not

nearly as significant: all three would provide reasonable models in simulation terms, with little to

choose between them; and their predictive performance is quite similar, with only a marginal

advantage to the DBMS model. Perhaps surprisingly, given its age, the BM model is still very

competitive with both the IHACRES and DBMS models in all simulation and predictive

respects. If we are to choose between the models, therefore, it is necessary to look further than

these quantitative performance measures and consider other, more qualitative, properties of the

models, such as their conceptual interpretations.  This must be carried out very carefully,

however, because it means moving away from objective measures of performance into much

less trustworthy subjective areas, where the prior perceptions of the modeller can tend to bias

rational judgement.

6. CONCLUSIONS

This chapter has been concerned with the process of constructing models for stochastic,

dynamic systems. It has argued that there is no unique mathematical model of any real system;

that, in consequence of this, the model has to be chosen on the basis of carefully defined

objectives; and that the Data-Based Mechanistic (DBM) approach to modelling stochastic,

dynamic systems provides a suitably rigorous statistical framework for such objective-oriented

modelling exercises. In more specific terms, the chapter has been concerned with a detailed

exploration of the Hybrid Metric-Conceptual (HMC) class of rainfall-flow models; and it has

shown how such models may be statistically identified, estimated and validated using DBM

methods, as demonstrated by the modelling of rainfall-flow processes in the Coweeta

catchment. In relation to the topic of this book, the chapter has also raised questions about the

meaning of the term ‘validation’ and to what extent quantitative procedures of predictive

validation can engender confidence in a model. The Popperian concept of model falsification,

combined with the idea of ‘conditional validation’, has been promoted as a reasonable approach

to verifying the practical utility of DBM models, but the possible limitations of such quantitative

methods have been mentioned.
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Clearly, predictive validation of a data-based rainfall-flow model, as defined in this chapter, is a

necessary condition for its acceptance, regardless of the study objectives. If the model fails to

perform adequately in this predictive sense, then it is hard to see how it can be considered

acceptable in any meaningful role, except as a vehicle for scientific debate. But, just as

obviously, predictive validation is not a sufficient condition for the model’s acceptance within

the wider hydrological community. The hydrologist is rightly suspicious of the ‘black-box’

model which performs well in forecasting terms but whose abstract form makes its contact with

hydrological reality very tenuous. In this sense, it has been argued that a model needs to have a

physically interpretable conceptual basis which is reasonably acceptable within current

hydrological paradigms. On the other hand, the model should not be overly constrained by

these existing paradigms and the modeller should be willing, even anxious, to attack them if the

DBM modelling procedure secures evidence from the experimental data that they may have

serious limitations.

In relation to the specific rainfall-flow modelling exercise considered in this chapter, we have

seen that a number of HMC models are competitive in their explanation and prediction of the

time series data from the Coweeta catchment. If the modelling objective is forecasting, then the

standard DBM model, particularly if it is made adaptive, has definite theoretical and practical

advantages. However, if the model is required for simulation purposes, in applications such as

management, planning and certain aspects of scientific investigation, then the DBM model is not

so useful and the alternative DBMS, IHACRES and BM models come into their own.

In regard to these latter three models, it would appear that the IHACRES and BM models are

less satisfactory in statistical terms and the estimated parameters of the nonlinear parts of the

models, in particular, are not very well defined. Equifinality plots (Franks et al, 1997; Young,

1999a) tend to confirm this and suggest that there are some identifiability problems for these

models, deriving mainly from the effective rainfall nonlinearity. Although the DBMS is

marginally superior in statistical terms, its nonlinear catchment storage model is also rather ill-

defined. Overall, then, it would appear that there is little to choose between the different

catchment storage equations used in the three simulation models and, indeed, that any

reasonable conceptual storage model would yield similar predictive performance. This is a

classic case of equifinality and it means that the models cannot be judged or ‘validated’ on the

basis of their conceptual structure, even though hydrologists may hold great store by this aspect

of the model.  On the other hand, although all three simulation-type models are statistically

inferior to the DBM model, they perform sufficiently well in a predictive sense to make them

conditionally valid under our definition of this term. Moreover, they all have a conceptual basis

which seems reasonably acceptable within current hydrological paradigms; and they can be

employed easily within a simulation context, whether deterministic or stochastic.
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It is their ability to function in this stochastic simulation sense that sets these latest HMC

models apart from the deterministic simulation models that have so dominated rainfall-flow

modelling in the past. The advent of very fast, desktop (and portable7) computers, as well as

developments in Monte-Carlo simulation methods, mean that deterministic simulation should no

longer be the norm: all systems are uncertain to some degree and even models constructed on a

largely deterministic basis can now be subjected quite easily to powerful stochastic uncertainty

and sensitivity analysis (see e.g. Young et al, 1996; Parkinson and Young, 1998; Young 1999a).

Another advantage of the HMC models is that they can be incorporated easily into a stochastic

state-space setting.  This is useful for two main reasons. First, it can provide a framework for

final stochastic optimisation, in which the associated Kalman filter is exploited to obtain

maximum likelihood estimates of the model parameters (see Appendix 2). Second, the

stochastic state space formulation is inherently recursive so that, when combined with the

recursive estimation of the model parameters, which is straightforward in the case of the TF

models considered here (Young, 1984), it provides a vehicle for on-line adaptive modelling,

forecasting and data assimilation. The DBM model appears to be particularly attractive in this

context.

So what can we conclude at the end of this investigation of HMC rainfall-flow modelling?

Unambiguously, there are good reasons for preferring the DBM model in forecasting

applications. But which of the other three HMC models (DBMS, IHACRES or BM) is

preferable within the alternative simulation environment? This is almost an impossible question

to answer since it requires us to reflect on what is meant by the term ‘validation’ in wider, semi-

quantitative or qualitative terms, where personal subjective judgement becomes a factor. In

particular, because all three models perform equally well, with only marginal statistical

advantages to the DBMS model, it is necessary to decide which of them has the most attractive

conceptual base.  Whilst the author has some preferences in this regard, only time will tell

which of the models, or any future developments of them, will perform better in practical terms.

And it is surely on such practical grounds that any preference should be given.

As regards future developments of the HMC models considered in this chapter, there remain

two major problems which need attention. First, the poor identifiability and consequent

equifinality of the nonlinear effective rainfall equations in the BM, IHACRES and DBMS

models suggest strongly that more research is required on the nature and modelling of the

rainfall-flow nonlinearity in such ‘simulation’ models. The DBM approach may help in such

research, since the nonlinearity in the DBM model is much better defined and demonstrates the

value of using measured rather than ‘latent’ variables in defining the nonlinear mechanisms.
                                                
7 All of the analysis described in this chapter was carried out on a Macintosh Powerbook 3400c, within a
Matlab™ software environment.



29

Second, in these models and most other rainfall-flow models the author has investigated, the

model residuals are clearly non-normal and dominated by large outliers. The statistical analysis

in this chapter has largely ignored this problem, but it is clear that superior estimation results

and better quantification of the uncertainty in the stochastic models would be obtained if this

aspect of rainfall-flow data was taken fully into account.   
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APPENDIX 1 DOMINANT MODE BEHAVIOUR

This Appendix presents a simulation example which demonstrates the importance of dominant

modal behaviour in model identification and estimation. The simulated model is of 26th order

with one sample pure (advective) time delay and consists of 26 first order processes in series,

each with unity gain and lag coefficient ranging from 0.1 in steps of 0.02 to 0.6 (e.g. time

constant (residence times) from 0.43 to 1.96 days). In this sense, it could represent a ‘lag and

route’ model of flow in a long river; or an ADZ model of solute transport, also in a long river.

Since the model is an ‘all pole’ TF (i.e. the numerator TF is a scalar), the SRIV identification

stage in the analysis is constrained to such models and a selection of the results are presented in

Table A1 (even better fitting models can be identified if this restriction is removed). These were

obtained from the analysis of the noise-free impulse response data (unit hydrograph in

hydrological terms) generated by the 26th order simulation model. Although the best identified

model is only 7th order with a pure time delay of 3 sampling intervals, it is extremely well

identified, with a very negative YIC value and a coefficient of determination RT
2 of nearly unity.

Neither the SRIV algorithm  nor the PEM algorithm in Matlab converged at all for model

orders greater than 10, indicating severe identifiability problems in these higher order cases. In

other words, it is impossible to identify the true model from the simulation data, despite the fact

that the data are noise-free.
Table A1 SRIV Identification Results

Model
Structure

YIC RT
2 2 % error by

variance
% error by
stand.dev.

 7   1   3 -26.0291 0.999990 0.000139 0.0010 0.3131
 6   1   4 -22.8568 0.999936 0.000907 0.0064 0.7999
 7   1   2 -22.3942 0.999833 0.00235 0.0166 1.2876
 6   1   3 -22.5934 0.999819 0.00256 0.0181 1.3439
 5   1   5 -20.9560 0.999740 0.00367 0.0259 1.6091
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The best identified 7th order model takes the following form:

       yt =
0.0001169

1 − 5.65z −1 +13.93z −2 −19.39z −3 +16.47z −4 − 8.54z −5 + 2.50z −6 − 0.32z −7 u t −3

where the denominator polynomial coefficients have been rounded to 2 decimal places. The

standard errors on the estimated parameters are very small and so these are not reported. The

steady state gain of this reduced order model is insignificantly different from the unity value of

the 26th order model. If the 26th order model is now perturbed by a different input, in the form

of the Coweeta rainfall data from sample 8310 to 8810, then the above model performs in a very

similar manner, with a percentage error by variance of 0.001 and by standard deviation of

0.3205, despite the fact that the input data is so different in this ‘validation’ test.

These results are confirmed by the power decomposition analysis of Liaw (1986), which shows

that the percentage power contributed to the response of the 26th order model by the first seven

modes is 99.6% of the total power in the model response, and this power is distributed as

follows:

Table A2 Liaw Analysis Results
dynamic

mode 1 2 3 4 5 6 7

% power 48.30 28.47 11.67 6.37 2.60 1.69 0.49

In other words, practically all of the model response is explained by the effect of these dominant

modes and, in fact, the first five modes explain approximately 97.5% of the response.

The message provided by this example is clear: a high order linear system can be approximated

almost exactly by a much lower order linear system (often including an additional pure time

delay) which reflects the dominant modes of the system’s dynamic behaviour. Since this result

is generic and certainly applies to most linear dynamic systems of the kind encountered in

environmental and hydrological science, the consequences on model identification and

parameter estimation are profound. In particular, the identifiable order of a dynamic system is

clearly limited by its dominant mode characteristics; and it is impossible, in almost all practical

situations, to unambiguously estimate the parameters from experimental data, even when the

level of noise of the data is very low.
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APPENDIX 2 NON-STATIONARY AND NONLINEAR MODEL ESTIMATION

This Appendix outlines the approach to time variable and state dependent parameter estimation

employed in the DBM modelling of non-stationary and nonlinear systems. In the main text, this

is used to identify the nature of the effective rainfall nonlinearity shown in fig.3.

The TVP/SDP Model

In discrete-time, sampled data terms, the behaviour of a typical measured variable yt  can be

described by a general stochastic, dynamic equation of the form,

yt = ℑ{ t , t}        (A2.1)

where ℑ{⋅} is a reasonably behaved, nonlinear function of the variables in an extended or Non-

Minimum State Space (NMSS; see Young et al, 1987) defined by the following NMSS state

vector,

t = [y t −1 L yt −n u t
T L u t −m

T U t
T L U t −q

T ]T

We see that t  is composed of the past values of yt , as well as present and past values of a

deterministic input (or exogenous) variable vector u t  with elements ui, t ,i =1,2,...,r ; and the

present and past values of a vector U t  of other exogenous variables Uj, t , j =1,2,..., p . Finally, t

is an unobserved, zero mean, stochastic process with fairly general properties, which is the

source of all stochasticity in the system and is assumed to be independent of the input variables

ui, t  and Uj, t .

This model assumes that yt  is causally related to the primary input variables ui, t ; while the

vector U t  represents any other associated variables which may affect the system nonlinearly but

whose relevance in this regard may not be clear prior to time-series analysis. For example, in the

rainfall-flow case, yt  is the flow measurement, u1,t = rt  is the rainfall; and  U1, t =Tt  is the

temperature.

If, for simplicity, we consider the case of a single, primary, input variable, so that r =1 then,

following arguments similar to those presented in Young (1993) and Young and Beven (1994),

the nonlinear model (A2.1) can be approximated by the following general TF model with time

or state dependent parameters,

 

yt =
B( t,z −1)

A( t,z −1)
ut − =

b0, t + b1,tz
−1 + L + bm, tz

−m

1 + a1,tz
−1 + L + an, tz

−n ut − + t (A2.2a)
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or,
yt = xt + t (A2.2b)

where xt , which can be considered as the noise free output of the model, is defined as,

xt =
B( t,z −1)

A( t,z −1)
ut − (A2.2c)

t  is  a stochastic noise term arising from the stochastic disturbance t  in (A2.1) which, like t ,

is assumed to be statistically independent of the input variable ut ; and  is any pure time delay

affecting the relationship between ut  and yt .

The model (A2.2) is a time/state dependent parameter version of a standard TF model, such as

equation (1) in the main text, where the polynomial parameters are assumed to be possible

functions of the time index t. In the present context, these Time Variable (TVP) or State

Dependent (SDP) parameters will reflect the nature of any nonstationary or nonlinear aspects of

the system behaviour; and their statistical estimates, based on the data { yt , ut }, should provide a

potential source of information on the nature of the nonstationarity and/or  nonlinearity in the

system. The approximation of the nonlinear system by a TVP/SDP model such as (A2.2) is the

key assumption in the first stage of DBM modelling. As shown in Young (1984, 1988, 1993,

1998a,b,c, 1999b) and Young and Beven (1994), TVP/SDP estimation is based on a powerful

Fixed Interval Smoothing (FIS) method of recursive estimation. The details of FIS estimation

are given in these prior publications and so it will suffice here to present only the latest

improvements to the procedures described in these earlier publications.

FIS Estimation of TVP’s

The FIS algorithm is applied to the following alternative vector form of the TF model (A2.2),

where the pure time delay  has been omitted to simplify the presentation:

                     yt = z t
Ta t + t ; t =1,2,L ,N  (A2.3)  

where,
z t

T = [−y t −1 − yt −2 L − y t −n ut L u t −m ];

a t = [a1,t a2, t L an, t b0, t L bm, t ]
T

and t  is a stochastic noise term arising from the presence of  t  in (A2.2). We can say little

about the statistical properties of t  because of the general TVP nature of the model.

Consequently, it will be assumed that, once again, it is statistically independent of the input

variable ut .  
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Based on this model form, the FIS algorithm provides an estimate ˆ a t |N  of the model parameter

vector a t  at every sampling instant, conditional on the time-series data { yt , ut } over the whole

observation interval t =1,2,L ,N . In addition, if the noise t  is assumed to be a zero mean

sequence of serially uncorrelated random variables (discrete white noise), it also yields an

estimate, at each sampling instant, of the covariance matrix Pt = E{˜ a t |N
˜ a t |N

T }, where

˜ a t |N = ˆ a t |N − a t  is the estimation error. If t  is not white noise, then the matrix Pt , as derived

from the FIS algorithm in the same manner, will not provide an accurate estimate of the

covariance properties of the FIS estimates. Nevertheless, it still provides information on the

relative accuracy of the parameter estimates which can, as we shall see, prove useful in

evaluating the detailed nature of the estimated parameter variations.

FIS Estimation of SDP’s by Sorting and Backfitting

FIS estimation of the TVP vector a t  in (A2.3) is limited to slowly varying parameters: i.e.

parameters that vary slowly in relation to the variations in the input and output variables yt  and

ut . In the case where a t  is a SDP vector, on the other hand, the estimation procedure normally

needs to be modified. In particular, it becomes necessary to sort the data in a non-temporal

order, so that the SDP variations are smoother and less rapid. In this manner, the FIS algorithm

is able to estimate the parametric variations more easily and so obtain more accurate,  lower

variance estimates.  For example, if the time series are sorted in some common ‘ascending

order’ manner (the sort operation in Matlab), then the rapid natural variations in yt  and ut  are

effectively eliminated from the data and replaced, in the sorted data space, by much smoother

and less rapid variations.  And if the SDP’s are, indeed, related to these variables, then they will

be similarly affected by the sorting. Following FIS estimation, however, these SDP estimates

can be ‘unsorted’ (a trivial unsort operation to reverse Matlab’s sort) and their true, rapid

variation becomes apparent.

One obvious requirement with this new approach to SDP estimation is that the sorting of data,

prior to FIS estimation, must be common to all of the variables in the relationship (A2.3). If  an

‘ascending order’ strategy is selected, therefore, it is necessary to decide upon which variable in

the model the sorting should be based. The simplest strategy is to sort according to the

ascending order of the ‘dependent’ variable yt  (here flow). Depending upon the nature of each

SDP in the vector a t , however, a single variable sorting strategy, such of this, may not produce

entirely satisfactory results. If this is the case, then a more complicated, but still straightforward,

‘backfitting’ procedure is exploited. Here, each parameter is estimated in turn, based on the

‘partial residual’ series obtained by subtracting all the other terms on the right hand side of



34

(A2.3) from yt . In this situation, the sorting at each such backfitting iteration can be based on

the single variable associated with the current SDP being estimated.

To clarify this backfitting procedure, let us consider the DBM rainfall-flow model discussed in

the main text. The analysis starts by considering the simplest TVP/SDP relationship that might

explain the dynamic relationship between the rainfall rt , temperature Tt  and flow yt . Initial

SRIV identification suggests that, in the case of the Coweeta data, this is the following first

order model:

yt = b +
b0, t

1 + a1,tz
−1 rt +

fz−6

1 + gz −1 Tt + t (A2.4)

where it will be noted that the second TF between Tt  and flow is identified as being linear with

constant parameters. If all terms except the noise t  and TF between rt  and yt  are taken to the

left  hand side of the equation (since they involve only parameters that have been identified as

constant over time), then equation (A2.4) can be written in the form,

yt
∗ =

b0, t

1 + a1,tz
−1 rt + t (A2.5a)

where,

yt
∗ = yt − b −

fz−6

1 + gz −1 Tt (A2.5b)

or, considering (A2.5a) in equation form,

yt
∗ = −a1,tyt −1

∗ + b0, trt + t (A2.5c)

which is a first order example of the general model (A2.3) with yt  replaced by yt
∗.

In this case, sorting according to the ascending order of yt
∗ yields sensible FIS estimation

results (see fig.3), in the sense that the smoothed SDP estimates are relatively smooth and the

SDP model explains the data well with RT
2 = 0.9. However, if this were not the case, backfitting

would need to be invoked. A typical algorithmic approach would then be as follows:-

• Assume that, without any sorting (i.e. as in the previous studies of Young, 1993, Young and
Beven, 1994), FIS estimation has yielded prior TVP estimates ˆ a 1,t |N

1  and ˆ b 0,t |N
1  of a1,t  and

b0,t , respectively8. An SDP estimation equation for a1,t  can then be formulated as,
                                                
8 These could be simply the SRIV constant parameter estimates, since the convergence of the backfitting
procedure is not too sensitive to the prior estimates, provided they are reasonable. Here, for example, the SRIV

constant parameter estimates yield an RT
2

= 0.74 and SDP estimation raises this to RT
2

= 0.9 .
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[y t
∗ − ˆ b 0, t |N

1 rt ]
sy = a1,t

sy(yt −1
∗ )sy (A2.6)

where the superscript sy  denotes that all the variables are sorted in the ascending order of

the right hand side variable yt −1
∗  in (A2.5c), which is associated with the SDP a1,t . This

yields the FIS estimate a1,t |N
sy  of a1,t

sy .

• a1,t |N
sy  is then ‘unsorted’ so that the SDP estimation equation for b0,t  can be formulated as,

[y t
∗ + ˆ a 1,t |N yt −1

∗ ]su = b0, t
su rt

su (A2.7)

with the variables now sorted according to the ascending order of the rainfall variable rt

associated with b0,t . This yields the FIS estimate ˆ b 0,t |N
su  and the first iteration of the

‘backfitting’ algorithm is complete.

• This process is continued in an iterative manner (each time unsorting, forming the partial

residual, and sorting according to the current right hand side variable, prior to FIS
estimation), until the FIS estimates of the SDP’s ˆ a 1,t |N  and ˆ b 0,t |N  (which are each time-

series of length N) do not change significantly between iterations. The smoothing ‘hyper-

parameter’ required for FIS estimation at each iteration is optimised by Maximum

Likelihood (ML), based on prediction error decomposition (see Young, 1999b).

Since the SDP estimates resulting from this backfitting algorithm are themselves time series, the

algorithm constitutes a special form of non-parametric estimation and, as such, can be compared

with the Generalised Additive Modelling (GAM) approach of Hastie and Tibshirani (1996).

However, in both conceptual and algorithmic terms, the algorithm is significantly different from

this earlier approach. Indeed, in the current dynamic modelling context, the GAM backfitting

algorithm will only produce unbiased estimates of the SDP’s in (A2.5c) if the noise t  is zero

mean, serially uncorrelated and independent of any noise on the model variables yt
∗ and ut  (i.e.

the SDP version of the AutoRegressive eXogenous variable (ARX) model, rather than the more

general TF model considered here). However, by exploiting a new instrumental variable form of

the FIS algorithm (Young and McKenna, 1999), the proposed backfitting algorithm is not

limited in this manner and is able to produce unbiased non-parametric estimates of the TF

model parameters.  

Final Nonlinear Model Estimation.

The primary aim of the non-parametric FIS analysis in previous sections of this Appendix is to

identify a sensible functional form for any nonlinearities in the model; in other words, the
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analysis is aimed at nonlinear model structure identification. In general, this identification

phase is completed by fitting a finite dimensional parametric function to the non-parametric

estimate of the nonlinearity using Weighted Least Squares (WLS) estimation, as discussed in

Young (1993) and Young and Beven (1994), where the weighting is a function of the error

covariance matrix Pt  generated by the FIS algorithm. Fig.3 illustrates this procedure within the

present rainfall-flow modelling context: the dots show the estimate ˆ b 0,t |N  plotted against the

modified flow variable yt
∗ and the full line is the WLS estimate of a power law relationship of

the form ˆ b 0,t |N = (y t
∗ )  (see the comments about this in the main text). The backfitting

procedure suggest that the lag parameter a1,t  does not change too significantly over the

observation interval and so it is assumed time-invariant in this case. As a result, the identified

model, incorporating the power law, takes the form,

yt
∗ =

b0

1 − a1z
−1 ut + t    ;   u t = c(y t

∗ ) (A2.8)

where b0.c = . This constitutes the end of the first stage of nonlinear DBM model

identification.

The model (A2.8) explains the Coweeta data reasonably well but further SRIV identification

and estimation with  ut  defined as in (A2.8) suggests that the dynamics are a little more

complicated than this, with a second order relationship indicated between the modified

(effective) rainfall  ut  and yt
∗. As a result the finally identified model structure takes the form

shown in equation (5a) of the main  text. Once a plausible structural form for the nonlinear

model, such as this has been identified, however, it is then necessary to finally re-estimate the

model against the time-series data by some form of numerical optimisation (e.g. deterministic

minimisation of the model residual variance; maximum likelihood estimation; prediction error

minimisation etc.), the exact nature of which will tend to depend on the identified form of the

model.

In the present rainfall-flow example, the nonlinearity resides only in the effective rainfall input,

so that the linear and nonlinear parts of the model are relatively separable. As a result, the

optimisation method used to obtain the model (5a) involves optimising the nonlinear component

parameters with, at each step in the optimisation, the linear TF model parameters estimated by

SRIV estimation. As pointed out in the Conclusions section of the paper, this can be considered

as an approximation to a more elegant (but computationally more demanding) Maximum

Likelihood (ML) procedure based on prediction error decomposition (see Schweppe, 1965;

Harvey, 1989). Recent research (Young, 1999c, which considers the modelling of blowfly

population dynamics) has suggested, however, that the recursive ML methodology is feasible



37

for highly nonlinear stochastic systems and its application to rainfall-flow modelling is now

being considered.

A SUMMARY OF THE COMPLETE DBM PROCEDURE FOR A SISO SYSTEM

In the case of a single input-single output system, the analysis discussed in the previous sub-

sections can be summarised as follows:

(1) Examine the available time-series data { yt ,ut } and use these to estimate the

parameters in the best identified, constant parameter TF model using a reliable method

of TF model identification and estimation (here the SRIV method). Apply standard

statistical tests to the model residuals, including tests for nonlinearity (e.g. Billings and

Voon, 1986): if the results indicate linearity then the linear model can be accepted and

the analysis is complete. Alternatively, proceed to step (2)

(2) Based on the analysis in (1) and any knowledge about the physical nature of the

system, select: (a) the variables that could characterise the NMSS vector; and (b), the

simplest TF model that appears capable of characterising the behaviour of the output

variable yt  in relation to the observed input ut  (this will often be a first or second order

model).

(3) Use FIS estimation to obtain initial non-parametric TVP estimates of the parameters in

the initial, simple TF model and define those parameters in ˆ a t  which show significant

variation over the observation interval. If any TVP/SDP parameters are identified, then

obtain the FIS estimate of the TF model parameter vector ˆ a t |N , if necessary (in the SDP

case) using the backfitting algorithm. Note the relative accuracy of these estimates over

time by reference to the appropriate diagonal elements of the covariance matrix Pt |N .

(4)  Examine the nature of the FIS estimated time variation in the parameters in relation to

all the variables in the defined NMSS vector, using devices such as scatter plots,

correlation analysis etc., in all cases taking into account the relative accuracy of the FIS

estimates identified in (3). On the basis of these results and a physically meaningful

interpretation of the model, define nonlinear, parametric relationships that are able to

approximate the FIS estimated non-parametric relationships.

(5)  On the basis of the results in (4), use WLS estimation to estimate the constant

parameters which characterise these nonlinear laws, with the weighting defined by the

diagonal elements of the covariance matrix Pt |N .

(6) Use the estimates of the parameters in (5) as starting values in a final model estimation

stage where the (hopefully constant) parameters in the identified nonlinear, stochastic

model are estimated by some form of numerical optimisation based on the identified

nonlinear model form and all the relevant data in the NMSS vector.
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(7) Analyse the residuals from the nonlinear estimation to ensure that there is no evidence

of any residual nonlinearity not identified in steps (1)-(6). This should include standard

statistical tests, such as correlation analysis and normality statistics, as used in the main

text, as well as nonlinearity tests on the residuals (e.g.  Billings and Voon, 1986).

APPENDIX 3 MODEL ORDER IDENTIFICATION

 

In DBM modelling, model order identification is based around the RT
2, YIC and AIC criteria,

which are defined as follows, where yt  is the measured output of the system:-

(i)  RT
2 =1 −

ˆ 2

y
2 ; y

2 =
1

N
[y t − y 

t =1

t =N

∑ ]2; y =
1

N
yt

k =1

k =N

∑

(ii)  YIC= loge

ˆ 2

y
2 + loge{NEVN}; NEVN =

1

np

ˆ 2.ˆ p ii
ˆ a i

2
i =1

i =np

∑

(iii)  AIC(np) = N loge
ˆ 2 + 2.np

Here ˆ 2 is the variance of the model residuals; y
2 is the variance of yt − y ; np=n+m+1 is the

number of estimated parameters in the ˆ a N  vector; ˆ p ii  is the ith diagonal element of the ˆ P t
covariance matrix obtained from the estimation analysis (so that ˆ 2. ˆ p ii  can be considered as an

approximate estimate of the variance of the estimated uncertainty on the ith parameter estimate);

and ˆ a i
2 is the square of the ith parameter estimate in the ˆ a N  vector.

We see that the coefficient of determinationRT
2 is a statistical measure of how well the model

explains the data: if the variance of the model residuals ˆ 2 is low compared with the variance of

the data y
2, then RT

2 tends towards unity; while if ˆ 2 is of similar magnitude to y
2 then it

tends towards zero (and can become negative). Note, however, that RT
2 is based on the variance

of the model errors ˆ e (k) and it is not the more conventional coefficient of determination R2

based on the variance of the one step ahead prediction errors: this is because RT
2 is a more

discerning measure than R2 for TF model identification.

The YIC is more a more complex, heuristic criterion. From the definition of RT
2, we see that the

first term is simply a relative measure of how well the model explains the data: the smaller the

model residuals the more negative the term becomes. The second term, on the other hand,

provides a measure of the conditioning of the Instrumental Product Matrix (IPM), which needs

to be inverted when the IV normal equations are solved (see Young, 1984): if the model is over-

parameterised, then it can be shown that the IPM will tend to singularity and, because of its ill-

conditioning, the elements of its inverse ˆ P t  will increase in value, often by several orders of

magnitude. When this happens, the second term in the YIC tends to dominate the criterion

function, indicating over-parameterisation. An alternative, justification of the YIC can be
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obtained from statistical considerations (see e.g. Young, 1989). Although heuristic, the YIC has

proven very useful in practical identification terms over the past ten years: it should not,

however, be used as a sole arbiter of model order and improvements in its definition are being

researched.

Finally, the Akaike Information Criterion AIC is a well known identification criterion for AR

processes (Akaike, 1974) and is used here to identify the order of AR models for the noise

process t , based on the analysis of the model residuals ˆ e t . Here, the first term is a measure of

how well the model explains the data; while the second term is simply a penalty on the number

of parameters in the model. Thus, as in the YIC, the AIC seeks a compromise between the

degree of model fit and the complexity of the model.

APPENDIX 4 BM, IHACRES AND DBMS ESTIMATION RESULTS  

This Appendix reports the most significant of the estimation results for the BM, IHACRES and

DBMS models. The complete results are not reported to conserve space.

BM Model
Instantaneous TF (A)

             Eig         SSG       TC    % of ˆ y 1,t  flow
               0           0.17     0.00          18.4

Fast Flow TF (B)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.52        0.22      1.49          25.0

Slow Flow TF (C)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.98        0.51      43.0          56.6

Constant Base flow
0.50 ( ∀t)

ˆ = 0.95(0.02); ˆ T r = 31.32(0.52);  s = 7.16(0.48)

(Note: to allow for comparison with the IHACRES model,

  Tm  in equation 2(i) was replaced by the daily temperature Tt )
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IHACRES Model
Instantaneous TF (A)

             Eig         SSG       TC    % of ˆ y 1,t  flow
               0           0.17     0.00          21.0

Fast Flow TF (B)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.52        0.24      1.53         29.7

Slow Flow TF (C)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.97        0.40      33.9         49.3

Constant Base flow
0.88 ( ∀t)

DBMS Model
Instantaneous TF (A)

             Eig         SSG       TC    % of ˆ y 1,t  flow
               0           0.17     0.00          26.1

Fast Flow TF (B)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.38        0.17      1.03         25.6

Slow Flow TF (C)
             Eig         SSG       TC    % of ˆ y 1,t  flow
            0.92        0.32     12.66        48.3

Slow Temperature (Seasonal) Effect (D)
             Eig         SSG       TC         TD
            0.97      - 0.23     9.63          6

Constant Base flow
1.82 ( ∀t)

ˆ =1.49(0.07);  ˆ c = 0.87(0.007);  0.036(0.001)
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FIGURE CAPTIONS

Fig.1 Stochastic dynamic modelling: A general statistical procedure for identification, estimation
and conditional validation.
Fig.2 Daily rainfall, flow and temperature data from the Coweeta catchment used for model
identification and estimation: samples 8310 to 10309.
Fig.3 FIS non-parametric estimate of the rainfall-flow nonlinearity as a function of flow.
Fig.4 DBM modelling results: comparison of the deterministic model output ˆ y t  and the flow
measurements yt  between samples 8310 and 8675.
Fig.5 DBM modelling results: comparison of the deterministic output  ˆ y 2, t  of the temperature-
flow model and the residual series yt − b − ˆ y 1,t  .
Fig.6 DBM modelling results: auto (ACF) and partial autocorrelation (PACF) functions of the
deterministic model residuals ˆ 

t = yt − ˆ y t .
Fig.7 DBM modelling results: auto (ACF) and partial autocorrelation (PACF) functions of the
stochastic model residuals ˆ e t  (one-step-ahead prediction errors).
Fig.8 DBM modelling results: cross correlation function (CCF) between the stochastic
residuals ˆ e t  and the temperature input Tt .
Fig.9 DBM modelling results: cross correlation function (CCF) between the stochastic
residuals ˆ e t  and the effective rainfall input ut .
Fig.10 DBM modelling results: the stochastic residuals ˆ e t , with the outliers marked as circled
points.
Fig.11 Systems block diagram of the DBM rainfall-flow model, showing the parallel flow
decomposition inferred from the TF model.
Fig.12 DBM modelling results: TF derived decomposition of flow showing the extracted
instantaneous (within one day), fast flow, slow flow and seasonal (temperature dependent)
components.
Fig.13 DBM modelling results: TF derived decomposition of flow showing the combined
instantaneous and fast flow effects (upper); and the combined slow flow and temperature
dependent components (lower) Also, temperature dependent component shown separately
(dashed) in lower plot.
Fig.14 DBM modelling results. MCS flow response: mean (full line) and ensemble envelope
(dashed), compared with the measured flow (circles).
Fig.15 DBM modelling results. MCS generated histograms for the TF derived slow (left) and
quick (right) residence time (time constant) parameters.
Fig.16 DBM modelling results. MCS generated histograms for the TF derived slow (left),
quick (middle) and instantaneous (right) partition percentage parameters.
Fig.17 Comparison of the TF derived instantaneous unit hydrographs for the four HMC
models: DBM (full line); DBMS (dashed); IHACRES (dashed); and BM (dash-dot).
Fig.18 Comparison of the FIS estimated effective rainfall nonlinearities for the four HMC
models: DBM (full line); DBMS (dash-dot); IHACRES (dotted); and BM (dashed).
Fig.19 Comparison of the differences between the effective and measured rainfall for the four
HMC models: DBM (top); DBMS (second); IHACRES (third); BM (lower).
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