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1. Introduction

The primary objective of this paper is to describe recent research on the design
of flood forecasting procedures; procedures that can be applied to the problem of
predicting future flow levels and, therefore, future flood events in river systems.
The aim of this research is to produce an on-line, real-time approach to flood
forecasting that is inherently stochastic and so able to predict not only the likely
level of future flow, but also the uncertainty associated with this prediction. In this
manner, the probability of a flood occurring in the near future is quantified and
this additional information can then be used as a basis for decision-making and
operational management in flood-prone locations.

The paper briefly outlines the problem of modelling the rainfall-flow processes
and the use of such models in flow forecasting system design. It then goes on to
describe, in some detail, one particular approach to the problem that includes two
main components. First, stochastic modelling based on the statistical identification
and estimation of physically-meaningful, nonlinear, transfer function models. Sec-
ond, an adaptive Kalman Filter forecasting algorithm based on a stochastic state
space formulation of these models.

This approach has the virtue of being inherently stochastic and, because it is
formulated in Bayesian, recursive estimation terms (e.g. Kalman, 1960; Bryson and
Ho, 1969; Young, 1984), it provides an ideal basis for real-time implementation
and the introduction of adaptive procedures. Such adaption is motivated by a view
that the rainfall-flow and riverine flow processes are inherently ‘nonstationary’: i.e.
no completely fixed model with constant parameters will be able to characterize
the catchment behaviour for all times into the future. As a result, the forecasting
system should be based on models that are able to adjust to any, normally small,
changes in the catchment behaviour not predicted accurately enough by the initially
estimated model.

The paper has another, underlying objective that is of deeper philosophical and
methodological significance and is, in part, a response to the recent increased in-
terest in the so-called ‘top-down’ (or ‘holistic’) approach to modelling hydrological
systems (e.g. Jothityangkoon et al., 2001, which follows from the earlier contribu-
tions of Klemes, 1983). Interest in top-down modelling has been revived largely
because the alternative ‘bottom-up’ or ‘reductionist’ philosophy that dominated
much research during the last century, has failed to solve the many problems of
modelling natural environmental systems. Top-down modelling in hydrology has
its parallels in the environmental (e.g. Young, 1978, 1983; Beck, 1983) and ecosys-
tems (e.g. Silvert,1993 & the prior references therein) literature of the 1970s and
early 1980s, where the present author’s contributions were presented within the
context of ‘badly defined’ environmental systems.

To quote from Young (1978):

“Many of the modeling problems that have arisen in connection with large
and complex natural systems, such as those met in environmental research,
can be attributed in part to the ’badly defined’ nature of such systems. This
poor definition arises for two major reasons. First, the size and complexity of
the systems are such that the mechanisms which govern the change in the ob-
served system variables and their relationships one to another are rarely fully
understood a priori. There can, in other words, be a basic ambiguity, a situ-
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ation in which a number of possible explanations for the observed behaviour
seem feasible but where there exists little a priori evidence as to which of
these explanations seems most plausible. . . .

. . . This problem is exacerbated by a tendency for most simulation modelling
methodology to be based on a “reductionist” philosophy. Here the system is
repetitively sub- divided into elemental components which are assumed to
have physical significance to the modeller and can be analyzed as relatively
separate entities. Having separately evaluated the ‘physical’ parameters asso-
ciated with each of the elemental models (such as dispersion or advection coef-
ficients in hydrological systems analysis), usually by experimentation either in
situ or in a laboratory, the modeler then re-assembles the model components
in a manner which he and his advisors perceive to be appropriate.

This reductionist philosophy can be contrasted with the alternative “holis-
tic” approach (see e.g. Rigler, 1976), in which the model is obtained from a
study of the intact system. It can and, indeed, it normally does, include an
appraisal of the components of the system (even small components). But as
long as the measurements on which the model building is based are made in
situ and the model is statistically assessed against these measurements as a
single entity, then the approach is holistic. Having established such an holis-
tic, empirical model (or theory) of behaviour, however, the holistic modeler
usually attempts to falsify his model and, if necessary to search for a more sat-
isfactory explanatory model, usually by recourse to sophisticated statistical
methodology.

The limitations of the reductionist approach have been emphasized by Herbert
Simon (1967) who says that a complex system is “one made up of a large
number of parts that interact in a non-simple way. In such systems, the whole
is more than the sum of the parts, not in an ultimate metaphysical sense, but
in the important pragmatic sense that, given the properties of the parts and
their laws of interactions, it is not a trivial matter to infer the properties of
the whole. In the face of complexity an in-principle reductionist may be at the
same time a pragmatic holist”. And the situation is even worse in the case of
badly defined systems since we are usually far from certain about the nature
of the interactions.

The main purpose of the present paper is to describe a new holistic approach

to the problem of modeling badly defined dynamic systems; . . . . . . It is sug-

gested here that good modeling will be strongly objective orientated and that,

in the area of environmental (and indeed socio-economic) systems analysis,

this objective is normally linked with problems of control or management.

The new approach is, therefore, specifically designed for such control and

management applications and entails the formulation of a linear but possibly

time-variable parameter ‘estimation model’. This model, which is obtained

directly from a simple ‘control model’ of the system, is aimed specifically at

describing the ‘dominant modes of behaviour’ of the system in as simple and

parametrically efficient manner as possible.”

And again (Young, 1983):

“Such a reductionist approach is rarely, however, accompanied by sufficient
evaluation of the resulting model as a complete entity. “Holistic” validation is
normally restricted to exercises in deterministic ‘model fitting’, in which over-
all ‘calibration’ of the model is achieved using manual or automatic methods of
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parameter ‘tuning’ or optimization; an approach that is sometimes enhanced
by deterministic sensitivity analysis, in which the sensitivity of the model
outputs to variations in the parameters is examined using various analytic
procedures (see, for example, Miller et al., 1976).

Although such analysis is perfectly respectable, it must be used very carefully;
the dangers inherent in its application are manifold, but they are not, unfor-
tunately, always acknowledged by its proponents. It is well known that a large
and complex simulation model, of the kind that abounds in current ecological
and environmental system analysis, has enormous explanatory potential and
can usually be fitted easily to the meager time-series data often used as the
basis for such analysis. Yet even deterministic sensitivity analysis will reveal
the limitation of the resulting model: many of the ‘estimated’ parameters are
found to be ill-defined and only a comparatively small subset is important in
explaining the observed system behavior.

Of course, over-parameterization is quite often acknowledged, albeit implic-
itly, by the reductionist simulation model-builder. Realizing the excessive de-
grees of freedom available for fitting the model to the data, he will often fix
the values of certain ‘better known’ parameters and then seek to fit the model
by optimizing the chosen cost function (usually the sum of the squares of the
difference between the model outputs and the observations) in relation to the
remaining parameters, which are normally few in number. In this manner,
the analyst ensures that the cost function-parameter hypersurface is domi-
nated by a clearly defined optimum (a minimum in the least-squares case), so
that estimation of the parameters which define the optimum becomes more
straightforward.

But what is the value of this optimization exercise in relation to the specifi-
cation of the overall model? Clearly a lower-dimensional parameter space has
been located which allows for the estimation of a unique set of parameter val-
ues. However, this has been obtained only at the cost of constraining the other
model parameters to fixed values that are assumed to be known perfectly and
are defined in relation to the analyst’s prior knowledge of the system. As a
result, the model has a degree of ‘surplus content’ not estimated from the
available data, but based on a somewhat ad hoc evaluation of all available
prior knowledge of the system and coloured by the analyst’s preconceived
notions of its behavioral mechanisms.

On the surface, this conventional simulation-modeling approach seems quite
sensible: for example, the statistician with a Bayesian turn of mind might wel-
come its tendency to make use of all a priori information available about the
system in order to derive the a posteriori model structure and parameters. On
the other hand, he would probably be concerned that the chosen procedures
could so easily be misused: whereas the constrained parameter optimization
represents a quantitative and relatively objective approach, it is submerged
rather arbitrarily within a more qualitative and subjective framework based
on a mixture of academic judgment and intuition. Such a statistician would
enquire, therefore, whether it is not possible to modify this framework so that
the analyst cannot, unwittingly, put too much confidence in a priori percep-
tions of the system and so generate overconfidence in the resulting model.”

These early papers rejected the idea of ‘deterministic reductionism’; i.e the
widely held view that a model can be constructed on the basis of deterministic
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equations based on the modeller’s perception of the physical system. And they pre-
sented initial thoughts on a more objective, statistical approach to modelling poorly
defined systems of all kinds. This approach is much in sympathy with the tenets of
top-down modelling but it is rather different in its methodological basis. The pa-
pers also adumbrated very similar anti-reductionist arguments that have appeared
recently in the hydrological literature and express some of these same views within
a hydrological context (Jakeman & Hornberger, 1993, Beven, 2000). Quite similar
anti-reductionist views are also appearing in other areas of science: for instance, in
a recent lecture (Lawton, 2001), the current chief executive of the Natural Environ-
ment Research Council (NERC) recounted the virtues of the top-down approach
to modelling ecological systems (although, for some reason, he did not appear to
accept that such reasoning could also be applied to other natural systems, such as
the physical environment).

In the twenty years since the earlier papers on top-down modelling were pub-
lished, the author has sought to develop his approach within a more rigorous
statistico-systems setting that he has called Data-Based Mechanistic (DBM) mod-
elling (this term is first used in Young & Lees, 1993 although it follows directly from
Young & Minchin, 1991). Underlying the main topic of the present paper, therefore,
is a desire to promulgate the idea of ‘inductive’ DBM modelling as an alternative to
the ‘hypothetico-deductive’ (and often reductionist) approach that has dominated
much scientific modelling research over the last century. Other recent publications
that have concentrated more centrally on this topic and can be considered as ad-
juncts to the present paper, in this more general regard, are: Young (1998a,b;
1999a); Young & Pedregal (1998,1999a); Young & Parkinson (2002); Young et
al.(1996); Shackley et al.(1998); Parkinson & Young, (1999).

2. Rainfall-Flow Modelling

It is possible to design flood forecasting systems for river catchments without the
explicit identification and estimation of physically meaningful rainfall-flow (rainfall-
runoff) and flow routing (flow-flow) models. In practical engineering terms, however,
it is often an advantage if the end-user understands the nature of the forecasting
algorithm, so that the overt presence of such models helps to engender confidence
in the nature of the resulting design. Also, such model construction is an essential
component in the DBM modelling procedures considered later in this paper.

Characterization of the nonlinear dynamic relationship between rainfall and
river flow is one of the most interesting modelling problems in hydrology. It has
received considerable attention over the past thirty years, with mathematical and
computer-based models ranging from simple black-box representations to complex,
physically-based catchment models. It would be impossible to review this enormous
literature here. Fortunately, however, there are many books available that deal in
whole, or in part, with this challenging area of science and engineering. Useful
texts of this type are: Anderson & Burt (1985); Shaw (1994); Singh (1995); and
Beven (2001). The latter book, in particular, provides a clearly written review of
the whole topic that not only deals critically with many recent developments but
also provides an excellent introduction to the subject at the start of the twenty-first
Century. In addition, two recent reports by the UK Environment Agency (Moore &
Bell, 2000; Carrington et al., 2000: see also Moore et al., 2000) are of considerable
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importance in both reviewing and comparing rainfall-flow models within the real-
time forecasting context. Unfortunately, as the authors point out, only a limited
sub-set of Transfer Function (TF) models, of the type discussed in the present
report, were considered (isolated event-mode, linear TF models), so the comparative
results are not particularly relevant to the present paper.

Wheater et al. (1993) have categorized rainfall-flow models into the following
four, broad types.

• Metric Models, which are based primarily on observational data and seek to
characterize the flow response largely on the basis of these data, using some
form of statistical estimation or optimization (e.g. Wood & O’Connell, 1985;
Young, 1986). These include purely black-box, time-series models, such as
discrete and continuous-time transfer functions, neural network and neuro-
fuzzy representations (e.g Jang et al., 1997). Often, such models derive from,
or can be related to, the earlier unit hydrograph theory but this is not always
recognized overtly.

• Conceptual Models, which vary considerably in complexity but are normally
based on the representation of internal storages, as in the original Stanford
Watershed Model of the nineteen sixties (Crawford & Linsley, 1966). How-
ever, assumptions about catchment-scale response are not often included ex-
plicitly, notable exceptions being TOPMODEL (Beven & Kirkby, 1979) and
the ARNO model (Todini, 1996). The essential feature of all these models,
however, is that the model structure is specified a priori, based on the hy-
drologist/modeller’s perception of the relative importance of the component
processes at work in the catchment; and then an attempt is made to optimize
the model parameters in some manner by calibration against the available
rainfall and flow data.

• Physics-Based Models, in which the component processes within the models
are represented in a more classical, mathematical-physics form, based on con-
tinuum mechanics solved in an approximate manner via finite difference or
finite element spatio-temporal discretization methods. A well known example
is the Systéme Hydrologique Européen (SHE) model (e.g. Abbot et al., 1986).
The main problems with such models, which they share to some degree with
the larger conceptual models, are two-fold: first, the inability to measure soil
physical properties at the scale of the discretization unit, particularly in re-
lation to sub-surface processes; and second, their complexity and consequent
high dimensional parametrization. This latter problem makes objective opti-
mization and calibration virtually impossible, since the model is normally so
over-parameterized that the parameter values cannot be uniquely identified
and estimated against the available data (see below).

• Hybrid Metric-Conceptual (HMC) Models, in which (normally quite simple)
conceptual models are identified and estimated against the available data to
test hypotheses about the structure of catchment-scale hydrological storages
and processes. In a very real sense, these models are an attempt to combine
the ability of metric models to efficiently characterize the observational data
in statistical terms (the ‘principle of parsimony’ (Box & Jenkins, 1970); or
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the ‘Occam’s Razor’ of antiquity), with the advantages of conceptual models
that have a prescribed physical interpretation within the current scientific
paradigm.

The models in the two middle categories, above, are often characterized by a
large number of unknown parameters that need to be estimated (‘optimized’ or
‘calibrated’) in some manner against the observational rainfall-flow time series. Be-
cause the number of parameters is normally very large in relation to the information
content of the data, however, such models are often over-parameterized and not nor-
mally identifiable, in the sense that it is impossible to estimate their parameters
uniquely without imposing prior restrictions on a large subset of the parameter val-
ues prior to estimation (see e.g. Young et al., 1996). The author and his co-workers
have addressed these problems of over-parameterization and poor identifiability as-
sociated with large environmental models many times over the past quarter century
(see previous references in §1). And recently, Beven and his co-workers (e.g. Franks
et al, 1997) have revisited this idea within the hydrological context, using the term
‘equifinality’ rather than ‘non-identifiability’ to describe the consequences of such
over-parametrization: namely the existence of many different parametrizations and
model structures that are all able to explain the observed data equally well, so that
no unique representation of the data can be obtained within the prescribed model
set.

There appear to be two main reasons for these identifiability problems. First,
any limitations of the observational data can be important, since the available time
series may not be sufficiently informative to allow for the estimation of a uniquely
identifiable model form. In particular, the inputs to a system may not be ‘suffi-
ciently exciting’ (see e.g. Young, 1984), in the sense that they do not perturb the
system sufficiently to allow for unambiguous estimation of all the model parameters
within an otherwise identifiable model structure. Secondly, even if the input does
sufficiently excite the system, there are usually only a limited number of dynamic
modes - the dominant modes of the system - that are excited to any significant
extent; and the observed output of the system is dominated by their cumulative
effect.

The importance of this dominant mode concept in model identification and esti-
mation is illustrated by appendix 1 of Young (2001b), which shows how the response
of a 26th order hydrological simulation model can be duplicated with exceptional
accuracy (0.001% error by variance) by a much simpler 7th order dominant mode
model. This is typical of most high order linear systems and appears to carry over
to nonlinear systems. For example, Young et al.(1996), Young (1998b) and Young
and Parkinson (2002) have used similar analysis to show how the response of high
dimensional, nonlinear global carbon cycle simulation models are accurately repro-
duced by differential equation models of much reduced order. This is also reflected
in other recent work on the simplification of global climate models (Hasselmann et
al., 1997; Hasselmann, 1998).

In the above references, the author has stressed that dominant modal behaviour
is a generic property of dynamic systems and that it is probably the main reason
for the limitation on the number of clearly identifiable parameters that can be
estimated from observational data. The largest order identifiable system that the
author has encountered from the analysis of real time series data, over the past
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forty years, is a 10th order differential equation model for the vibrations in a man-
made and specially designed cantilever beam (Young, 1998a), where the design and
associated very low damping of the system results in four dominant, complex modes
and the resulting model explains 99.74% of the experimental data.

However, the identifiable order is normally much lower than this for natural
systems, and many previous rainfall-runoff modelling studies (e.g. Kirkby, 1976;
Hornberger et al., 1985; Jakeman & Hornberger, 1993; Young, 1993, 1998b; Young
& Beven, 1994; Young et al., 1997a,b; Ye et al., 1998) suggest that a typical set of
rainfall-runoff observations contain only sufficient information to estimate up to a
maximum of six parameters within simple, nonlinear dynamic models of dynamic
order three or less. In the rainfall-runoff example discussed later, for instance, there
is clear evidence in the data of only two dominant modes between the effective
rainfall input and the flow response (as described by a second order transfer function
model with only four parameters): a ‘quick’ mode with a residence time (time
constant) of a few hours; and a ‘slow’ mode, with a residence time of many hours.

By their very nature, both the metric and HMC approaches avoid many of
these ‘large model’ problems. As a result, they provide a potentially attractive
vehicle for real-time flood forecasting: they can be justified well in statistical terms
and they are inherently simple in both structure and application. Such simplicity
means that the forecasting system can be more easily optimized on a regular basis
in order to ensure near-optimal performance. And, as we see later, it facilitates the
incorporation of advanced features such as on-line state and parameter adaption.
Of the two approaches, however, the attractiveness and practical utility of the basic
metric model as a vehicle for flood forecasting is marred by its lack of any clearly
defined internal physical interpretation. For instance, neural network (e.g. Tokar
& Johnson,1999) and neuro-fuzzy models have attracted a great deal of attention
in recent years but they are the epitome of black box modelling, revealing very
little of their internal structure that has any physical meaning (see the discussion
in Young (2001c) on the paper by Hu et al.(2001) where a neuro-fuzzy model with
102 parameters can be replaced by a nonlinear TF model with only 15 parameters
if the internal structure of the model is identified and taken into consideration). For
this reason, many hydrologists tend to mistrust such a black box model as a basis
for something as important as flood forecasting. Moreover, their lack of any obvious
internal physical meaning means that metric models are difficult to interrogate and
diagnose when errors are encountered. HMC models, on the other hand, do not
suffer from these problems and, indeed, are often simpler in dynamic terms than
the metric model.

Within the category of HMC models two main approaches to modelling can be
discerned; approaches which, not surprisingly, can be related to the more general
deductive and inductive approaches to scientific inference that have been identified
by philosophers of science from Francis Bacon (1620), to Karl Popper (1959) and
Thomas Kuhn (1962). In the first hypothetico-deductive approach, the a priori con-
ceptual model structure is effectively a theory of hydrological behaviour based on
the perception of the hydrologist/modeller and is strongly conditioned by assump-
tions that derive from current hydrological paradigms (e.g. the IHACRES model of
Jakeman et al., 1990). The alternative Data-Based Mechanistic (DBM) approach
is basically inductive, in the sense that it tries to avoid theoretical preconceptions
as much as possible in the initial stages of the analysis. In particular, the model
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structure is not pre-specified by the modeller but, wherever possible, it is inferred
directly from the observational data in relation to a more general class of models.
Only then is the model interpreted in a physically meaningful manner, most often
(but not always) within the context of the current hydrological paradigm: e.g. the
models of rainfall-flow data in Young (1993, 1998b), Young & Beven (1994) and
Young et al.(1997a).

This physical interpretation is an essential element in all DBM modelling: no
matter how well the DBM model explains the data, it is only considered truly
credible if it can be interpreted in physically meaningful terms. In this, the DBM
approach harks back to the father of modern statistical inference, Karl Friedrich
Gauss, who held that no hypothesis was satisfactory which rested on a formula and
was not also a consequence of physical conjecture. For this reason, Gauss abandoned
his work on the attraction between charged particles because he was unable to find a
plausible physical interpretation of the formula he had obtained for the relationship
between the relative motion and position of two particles.

Since the DBM approach is inductive, it is not wedded as strongly to the current
paradigms as the hypothetico-deductive approach: indeed, its intention is always to
respect these paradigms but not allow them to dictate the structure of models (here
rainfall-flow) if the data suggest otherwise. In other words and to use a Kuhnian
interpretation of science, the DBM approach encourages the continual questioning
of current paradigms and rejoices in its ability to promote paradigm change if this
is supported by observational data. Examples of this ability to promote paradigm
change in an evolutionary manner, based primarily on the statistical analysis of
data, are the development of the Aggregated Dead Zone (ADZ) model for solute
transport in rivers (e.g. Beer & Young, 1983; Wallis et al., 1989; Young & Wal-
lis, 1994); and recent research on modelling the relationship between government
spending, private capital investment and unemployment in the USA during the last
half century (Young & Pedregal, 1998, 1999a).

Another important aspect of the DBM approach to rainfall-flow modelling re-
lates to the objectives of the modelling exercise in each case. In the author’s opin-
ion, the search for a single, all encompassing model of any dynamic system is futile.
Rather, the model builder should be seeking a model that suits the nature of the
study objectives. Of course, this objective orientation does not have to be precisely
defined, since a model can simultaneously serve more than one purpose. But even
more loosely defined objectives need to be considered carefully before the mod-
elling exercise begins. In the present context, the primary objective is to obtain
DBM models that perform well in a flood forecasting and warning context.

3. Statistical Identification, Estimation and Validation

The statistical approach to modelling assumes that the model is stochastic: in other
words, no matter how good the model and how low the noise on the observational
data happens to be, a certain level of uncertainty will remain after modelling has
been completed. Consequently, full stochastic modelling requires that this uncer-
tainty, which is associated with both the model parameters and the stochastic
inputs, should be quantified in some manner as an inherent part of the modelling
analysis. This statistical approach involves three main stages: identification of an
appropriate, identifiable model structure; estimation (optimization, calibration) of
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the parameters that characterize this structure, using some form of estimation or
optimization; and conditional predictive validation of the model on data sets dif-
ferent to those used in the model identification and estimation. In this section, we
consider these three stages in order to set the scene for the later analysis. This
discussion is intentionally brief, however, since the topic is so large that a compre-
hensive review is not possible in the present context.

(a) Structure and Order Identification

In the hypothetico-deductive approach to model building, the model constitutes
a hypothesis or theory of behaviour and it is normally selected beforehand, based
on the current scientific paradigm. However, the subsequent processes of model
estimation and validation are often considered as exercises in Popperian falsification
(Popper, 1959) and so the initial perceived model structure may well be modified
in the light of these. In the DBM approach, this questioning of the hypothetical
model is more overt and the identification stage is considered as a most important
and essential prelude to the later stages of model building. Nevertheless, in the case
of HMC models, both approaches make use of statistical identification procedures
to some extent. These usually involve the identification of the most appropriate
model order, as defined in dynamic system terms, although the model structure
itself can be the subject of the analysis if this is also considered to be ill-defined.
In the DBM approach, for instance, the nature of linearity and nonlinearity in the
model is not assumed a priori (unless there are good reasons for such assumptions
based on previous data-based modelling studies) but is identified from the data
using non-parametric and parametric statistical estimation methods.

This important ‘identification’ stage means the application of objective statis-
tical methods to determine the dynamic model order and structure. Within the
hydrological ‘top-down’ context, for example, it is related directly to problems such
as the definition of how many storage zones (conceptual ‘buckets’) are required to
characterize the data at the scale of interest; and how these sub-models are inter-
connected (i.e. in series, parallel or feedback arrangements). It must be stressed,
however, that such problems arise mainly from the specification of the dynamic
model order (i.e. the order of the differential equations that are used to describe the
major rainfall-flow dynamics; or equivalently, here, the number of storage zones).
So a parsimonious model, in this important dynamic sense, is one that has a low-
est dynamic order that is consistent with the information content in the data and
whose parameters are statistically significant.

Of course, the DBM model may well have other parameters that are not asso-
ciated primarily with the dynamic order of the model and so are not so important
in identifiability terms: for instance, coefficients that parameterize any nonlinearity
in the system (see later). Here again, however, the presence of such parameters in
the model should be justified by whether or not they are statistically significant.
The statistical significance of parameter estimates can be evaluated by conventional
statistical tests or, in these days of the fast digital computer, by Monte Carlo simu-
lation and sensitivity analysis (see e.g. chapter 6 in Saltelli et al., 2000 and chapter 7
in Beven, 2001). As we shall see, for example, such analysis is very useful for assess-
ing the uncertainty associated with ‘derived’, physically interpretable parameters
that are computed from the estimated model parameters, rather than being esti-
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mated directly. In the present hydrological context, these include parameters such
as residence times and flow partitioning percentages associated with the inferred
catchment storage dynamics.

Once a suitable model structure has been defined, there are a variety of statis-
tical methods for identifying model order. Fitting criteria, such as the coefficient of
determination† (R2

T : see later) based on the model errors, can be very misleading
if used on their own, since over-parameterized models can ‘over-fit’ the data. In
general, therefore, it is necessary to exploit some specific order identification statis-
tics, such as: the correlation-based statistics popularized by Box & Jenkins (1970);
the well known Akaike Information Criterion (AIC: Akaike, 1974); and the YIC
criterion proposed by the present author (Young, 1989). In all cases, the objective
is to avoid over-parametrization by identifying a model structure and order that
explains the data well within a minimal parametrization: i.e. ‘parsimonious models’
(Box & Jenkins, 1970). The time series methods used for model order identification
in the present report are outlined in Young and Lees (1993), Young and Beven
(1994), Young et al. (1996) and Young and Parkinson (2002).

(b) Estimation (Optimization)

Once the model structure and order have been identified, the parameters that
characterize this structure need to be estimated in some manner. There are many
automatic methods of estimation or optimization available in this age of the dig-
ital computer, from the simplest, deterministic procedures, usually based on the
minimization of least squares cost functions; to more complex numerical optimiza-
tion methods based on statistical concepts, such as Maximum Likelihood (ML).
In general, the latter are more restricted, because of their underlying statistical
assumptions, but they provide a more thoughtful and reliable approach to statis-
tical inference; an approach which, when used correctly, includes the associated
statistical diagnostic tests that are considered so important in statistical inference.
Moreover, the power of the modern computer is such that some of these restrictions
are gradually being lifted, with the advent of stochastic approaches, such as numer-
ical Bayesian methods that exploit Monte Carlo Simulation (MCS) methods (see
later). In the present context, however, the estimation methods are based on special
Instrumental Variable (IV) methods that are formulated within a ML context but
do not require such strong assumptions about the nature of the noise processes (e.g.
Young, 1984 and the references therein).

(c) Conditional Predictive Validation

Validation is a complex process and even its definition is controversial. Some aca-
demics (e.g. Konikow & Brederhoeft, 1992, within a ground-water context; Oreskes
et al., 1994, in relation to the whole of the earth sciences) question even the pos-
sibility of validating models. To some degree, however, these latter arguments are
rather philosophical and linked, in part, to questions of semantics: what is the
‘truth’? What is meant by terms such as validation, verification and confirmation?
etc. Nevertheless, one specific, quantitative aspect of validation is widely accepted;

† often termed the ’Nash-Sutcliffe efficiency’ in the hydrological literature (Nash & Sutcliffe,
1970)
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namely predictive validation, in which the predictive potential of the model is eval-
uated on data other than that used in the identification and estimation stages of
the analysis.

It appears normal these days to follow the Popperian view of validation (Popper,
1959) and consider it as a continuing process of falsification. Here, it is assumed that
scientific theories (models in the present context) can never be proven universally
true; rather, they are not yet proven to be false. It seems reasonable to consider
that this yields a model that is considered conditionally valid, in the sense that it
can be assumed to represent the best theory of behaviour currently available that
has not yet been falsified. Thus, conditional predictive validation means that the
model has proven valid in this more narrow predictive sense. In the rainfall-flow
context, for example, it implies that, on the basis of the new measurements of the
model inputs (e.g. rainfall, temperature or evaporation) from the validation data
set, the model produces flow predictions that are acceptable within the uncertainty
bounds associated with the model. Note this stress on the question of the inherent
uncertainty in the estimated model: one advantage of statistical estimation, of the
kind considered in this chapter, is that the level of uncertainty associated with the
model parameters and the stochastic inputs is quantified in the time series analysis.
Consequently, the modeller should not be looking for perfect predictability (which
no-one expects anyway) but predictability which is consistent with the quantified
uncertainty associated with the model.

4. Data-Based Mechanistic (DBM) Modelling

Previous publications (Beck & Young, 1975; Whitehead & Young, 1975; Young,
1978, 1983, 1992, 1993, 1998a,b; Young & Minchin, 1991; Young & Lees, 1993;
Young & Beven, 1994; Young et al., 1996; Young & Pedregal, 1998, 1999a; Young
and Parkinson, 2002) map the evolution of the DBM philosophy and its method-
ological underpinning in considerable detail, and so it will suffice here to merely
outline the main aspects of the approach.

The main stages in DBM model building are as follows:

1. The important first step is to define the objectives of the modelling exercise
and to consider the type of model that is most appropriate to meeting these
objectives. The prior assumptions about the form and structure of this model
are kept at a minimum in order to avoid the prejudicial imposition of untested
perceptions about the nature and complexity of the model needed to meet
the defined objectives.

2. An appropriate model structure is identified by a process of objective statis-
tical inference applied directly to the time-series data and based on a given
general class of linear TF models whose parameters are allowed to vary over
time, if this seems necessary to satisfactorily explain the data.

3. If the model is identified as predominantly linear or piece-wise linear, then the
constant parameters that characterize the identified model structure in step
2. are estimated using advanced methods of statistical estimation for dynamic
systems. The methods used in the present report are the Refined Instrumental
Variable (RIV/SRIV) algorithms, which provide a robust approach to model
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identification and estimation that has been well tested in practical applica-
tions over many years. Full details of these methods are provided in Young &
Jakeman (1979, 1980); Jakeman & Young (1979); Young, (1984, 1985). They
are also outlined in Young & Beven (1994), Young et al.(1996) and Young
and Parkinson (2002).

4. If significant parameter variation is detected then the model parameters are
estimated by the application of an approach to time (or state) dependent
parameter estimation based on recursive Fixed Interval Smoothing (FIS):
e.g. Bryson & Ho (1969); Young (1984, 2000). Such parameter variation will
tend to reflect nonstationary and nonlinear aspects of the observed system
behaviour. In effect, the FIS algorithm provides a method of non-parametric
estimation, with the Time Variable Parameter (TVP) estimates defining the
non-parametric relationship, which then can often be interpreted in nonlinear
State-Dependent Parameter (SDP) terms (see Young, 1993; Young & Beven,
1994; Young, 1998a, 2000, 2001a; Young et al., 2001).

5. If nonlinear phenomena have been detected and identified in stage 4, the
non-parametric state dependent relationships are normally parameterized in
a finite form and the resulting nonlinear model is estimated using some form
of numerical optimization, such as nonlinear least squares or ML based on
prediction error decomposition (Schweppe, 1965). In the present report, this
approach to nonlinear identification and estimation is required only to define
the nature of the effective rainfall nonlinearity, which appears only at the
input to the model, as described in subsequent sections.

6. Regardless of whether the model is identified and estimated in linear or non-
linear form, it is only accepted as a credible representation of the system if,
in addition to explaining the data well, it also provides a description that
has direct relevance to the physical reality of the system under study. This is
a most important aspect of DBM modelling and differentiates it from more
classical statistical modelling methodology.

7. Finally, the estimated model is tested in various ways to ensure that it is con-
ditionally valid in the sense discussed above. This involves standard statistical
diagnostic tests for stochastic, dynamic models, including analysis which en-
sures that the nonlinear effects have been modelled adequately (e.g. Billings
& Voon, 1986), as well as exercises in predictive validation and stochastic
sensitivity analysis.

One aspect of the above DBM approach which differentiates it from alternative
deterministic top-down approaches is its inherently stochastic nature. This means
that the uncertainty in the estimated model is always quantified and this informa-
tion can then be utilized in various ways. For instance, it allows for the application
of Monte Carlo-based uncertainty and sensitivity analysis, as well as the use of
the model in statistical forecasting and data assimilation algorithms, such as the
Kalman Filter. The uncertainty analysis is particularly useful because it is able to
evaluate how the covariance properties of the parameter estimates affect the proba-
bility distributions of physically meaningful, derived parameters, such as residence
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times and partition percentages in parallel hydrological pathways (see e.g. Young,
1992, 1999a and the example below).

5. Transfer Function (TF) Modelling: Historical Background

TF models are one aspect of time series analysis and there have been many pub-
lications on the application of time series methods to rainfall-flow modelling and
forecasting, much too numerous to review in this paper. The papers in Wood (1985)
are a good reference to the state of the art at that time (e.g. Young and Wallis,
1985) and the contemporaneous chapter by Wood & O’Connell (1985) on real-time
forecasting provides a good introduction to the Kalman Filter formulated within a
real-time forecasting context. Another important over-view of stochastic hydrology
is Yevjevich (1987). A later review, concerned mainly with linear TF models, is
given by Cluckie (1993).

TF modelling originally derives from the Systems and Control literature, where
it has been used for over half a century as a major tool in modelling and control
system design for linear dynamic systems. TF models also have an obvious appeal
in hydrological terms, since the unit impulse response of the TF is an amplitude-
scaled equivalent of the hydrological Instantaneous Unit Hydrograph (IUH). As a
result, TF models were quickly assimilated into hydrological research and have
figured prominently in the hydrological literature for many years. Early examples
are Dooge (1959) and Nash (1959), the latter introducing the now well known ‘Nash
Cascade’, which is a chain of first order transfer functions used for flow routing.
Since then, there have been many references to TF models in the hydrological
literature, again too numerous to review here. The present author (Young, 1986)
interpreted existing flow routing models in transfer function terms, showing how
they could be recursively estimated and used for flow forecasting purposes.

While useful for modelling flow processes in river channels, an early applica-
tion of TF modelling to rainfall-flow data (Young, 1974) demonstrated that linear
TF models could only characterize rainfall-flow dynamics in the short term, as a
description of the dynamics associated with individual storm events. However, if
the input (numerator) parameters of the TF were allowed to vary, the model could
then capture the effects of temporal changes in the catchment soil-water storage
and modify the rainfall-runoff behaviour accordingly. When combined with meth-
ods of recursive estimation (e.g. Young, 1974, 1984), such TVP models could then
form the basis for Parameter-Adaptive flood forecasting procedures (see Cluckie,
1993; Lees et al., 1994).

The TVP model in Young (1974) led quickly to the formulation of the nonlinear
‘Bedford-Ouse’ model (BM model e.g. Whitehead & Young, 1975; Young, 2001b).
This consists of two components connected in series: an effective rainfall (sometimes
erroneously referred to as ‘rainfall excess’) nonlinearity, which accounts for the
catchment storage effects and helps to remove the requirement for the time variable
parameters; and a constant parameter, linear TF, which models the underlying
IUH dynamics. This special type of model (known as a ‘Hammerstein’ model in the
Systems literature) is an HMC model, as discussed previously, since the nonlinearity
is one particular conceptualization of the catchment storage dynamics and its effect
on the rainfall-runoff process.
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Of course, such conceptualizations are not unique and it was not surprising that
later research led to a small modification of the nonlinear BM model to yield the
IHACRES model (Jakeman et al., 1990) that has received considerable attention in
recent years. However, using the more general DBM approach to modelling, Young
(1993) then showed that the variations in the input parameters of the earlier TVP
transfer function model could be considered as being dependent upon the changes in
flow, with the flow effectively acting as a surrogate measure of the catchment storage
(see below, as well as the discussion in Young & Beven, 1994, and the papers of Lees,
2000a,b). In the resulting SDP model, the effective rainfall nonlinearity is identified
directly from the rainfall-flow data, so avoiding the intuitive conceptualization of the
BM and IHACRES models. As we shall see, this model is also in a useful, minimally
parameterized, form that is well suited for flood forecasting. At this point in time,
therefore, it constitutes one of the most advanced TF models being used in flood
forecasting and can be seen as a logical successor to previous TF models.

6. The Generic Catchment Model Based on TF Concepts

Within the catchment modelling context, TF models are of two types: the Nonlinear
Rainfall-Flow Model; and the Linear Flow Routing Model. The complete model used
in flood forecasting and warning applications is comprised of both types linked in
a manner that reflects the physical nature of the catchment under study. In this
paper, however, we concentrate almost completely on the rainfall-flow component,
with only a brief reference to flow routing. It must be emphasized, however, that
this is not because flow routing is unimportant in real-time flood forecasting. It is
simply that the advances reported in this paper relate almost entirely to rainfall-
flow modelling.

(a) The Rainfall-Flow Component

The first step in DBM modelling is the consideration of the objectives. In this
case, it will be assumed that this is limited to obtaining a model which explains
the rainfall-flow data well on an hourly basis at the whole catchment scale and, at
the same time, is capable of reasonable mechanistic interpretation combined with
an ability to perform well in a flood forecasting/warning context. Note that this
emphasis on the ‘catchment scale’ is very important because the hydrological sig-
nificance and interpretation of the rainfall-flow models developed below all relate to
catchment scale characteristics, such as storage and flow partitioning. These models
do not relate directly to more detailed characteristics such as flow paths in the field,
analysis of soil depths etc. Note also the allusion to the ‘rainfall-flow relationship’,
rather than the use of the more conventional ‘rainfall-runoff’ terminology. This is to
emphasize that, as discussed below, the models considered here predict both storm
runoff and base-flow, which are interpreted as the major components of the total
gauged flow.

Based on these objectives, the most obvious and physically meaningful model
form in this hydrological context is a continuous-time, differential equation (or set
of equations). Such a model is consistent, for example, with many conventional hy-
drological models: e.g. conceptual models of serial and parallel connected nonlinear
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Figure 1. Block diagram of the generic TF rainfall-flow model.

‘buckets’, as discussed, for instance, in the top-down modelling of Jothityangkoon et
al.† (see the description of such models in Young, 2002b). However, when dealing
with discrete-time, sampled data, it is often convenient to consider modelling in
terms of the discrete-time equivalent of the differential equation, the discrete-time
TF. Using this generic TF model form, previous DBM modelling of rainfall-flow
data based on SDP estimation (see the references in the previous section) has con-
firmed many aspects of earlier hydrological research and identified the nonlinear
DBM model structure shown in figure 1‡. Here, the two components of the TF
model are the linear component, which models the basic, underlying, hydrograph
behaviour; and the nonlinear component, which models the relationship between
the measured rainfall rt and the effective rainfall ut, so controlling the magnitude
of the hydrograph contribution through time.

If a constant, uniform sampling interval of ∆t time units (e.g. one hour) is
utilized, the flow yt measured at sample time t is related to past, sampled values
of itself and present and past sampled values of the ut by the linear, discrete-time
equation

yt = −a1yt−1 − · · · − anyt−n + b0ut−δ + b1ut−δ−1 + · · ·+ bmut−δ−m + ηt

or, in transfer function terms,

yt =
B(z−1)
A(z−1)

ut−δ + ξt (1a)

In these equations, z−1 is the backward shift operator, i.e., z−ryt = yt−r, while
A(z−1) and B(z−1) are constant coefficient polynomials in z−1 of the following
form:

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n

B(z−1) = b0 + b1z
−1 + b2z

−2 + · · ·+ bmz
−m.

(1b)

The term δ is a pure time delay, measured in sampling intervals, which is introduced
to allow for any temporal (advective) delay that may occur between the incidence

† although these authors discuss modelling at annual, monthly and daily scales, the conceptual
arguments are similar.
‡ This model is similar in concept to the variable gain factor model suggested by Ahsan &

O’Connor (1993), although its identification, estimation and implementation is quite different.
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of a change in ut and its first effect on yt. The noise term ξt = {1/A(z−1)}ηt rep-
resents uncertainty in the relationship arising from a combination of measurement
noise, the effects of other unmeasured inputs and modelling error. Sometimes, this
noise variable is modelled explicitly as a coloured noise process: e.g. by an Auto-
Regressive (AR) model,

ξt =
1

A(z−1)
et et = N(0, σ2) (1c)

where et is a zero mean, white noise input, sometimes with assumed Gaussian
normal amplitude distribution and variance σ2.

The structure (order) of the TF model (1a) is defined by the triad [n m δ] and
this is normally identified from the data during the identification and estimation of
the model, based on historical rainfall-flow data. This order is normally low, with
n ≤ 2, m ≤ 3; while the value of δ is defined by the nature of the catchment and the
location of the measurement devices, so its range is more difficult to define a priori.
The general TF model form B(z−1)/A(z−1) defines the input-output relationship
between ut and yt and its unit impulse response is a scaled version of the underlying
IUH. But, as we see later, it can also be decomposed into a parallel connection of
lower order processes. This decomposition not only makes the physical interpreta-
tion of the TF more transparent, it can also improve its performance in forecasting
terms when implemented within a flood forecasting system (see later §8).

The nonlinear component in figure 1 takes the general form:

ut = F(rt, yt, Et, Tt) (2)

where F(rt, yt, Et, Tt) denotes an unknown nonlinear functional relationship defin-
ing the unobserved catchment storage state st (or, as we shall see later, some
surrogate for this state) considered as a function of potentially important variables
that may affect or be related to catchment storage. In addition to the rainfall rt,
this function may involve other relevant measured variables, such as the temper-
ature Tt (or some function of this, such as the mean monthly temperature Tm),
the potential evaporation Et and the flow yt; all of which could help to define the
changes in soil moisture and storage if they are available. The inclusion here of yt
may seem strange at first sight but this is explained further below.

Three examples will help to take some of the mystery out of this nonlinear
function F(.). First, in the case of the Bedford-Ouse (BM) model (Young, 1974;
Young and Whitehead, 1975), F(.) = F(rt, Tm) is defined as a function of rt and
Tm by the following conceptual equations:

r∗t = rt
Tr − Tm

c
(3a)

st = st−1 +
1
τs

(r∗t − st−1) (3b)

ut = st.r
∗
t ; (3c)

Here, in order to allow for seasonal effects, the gauged rainfall rt is first modified
in relation to the changes in the difference between the monthly mean temperature
Tm and a reference temperature Tr, where both Tr and c are unknown parameters
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estimated from the data. The rainfall modified in this manner, r∗t , is then assumed
to affect the catchment storage through the storage equation (3b), which is simply
the discrete-time equivalent of a first order differential equation, with an unknown
residence time (time constant) τs, again estimated from the data. This equation
converts the changes in the modified rainfall r∗t to changes in the storage, with a
lag effect defined by τs and is assumed to account for the aggregative effect, at
the catchment scale, of all the processes involved in the storage dynamics. Finally,
the effective rainfall is defined in (3c) as the product of the gauged rainfall rt
and st. Note that, although superficially different, this model is closely related
to the conventional Antecedent Precipitation Index (API: see e.g Weyman, 1975;
Shaw, 1994), since the effect of equation (3b) is to weight the modified rainfall
exponentially into the past with a time constant τs.

In the case of the standard IHACRES model (Jakeman et al., 1990), which is a
direct development of the BM, F(.) = F(rt, Tt) is defined as a function of rt and
Tt by the following conceptual equations:

τs(Tt) = τse
20−Ttg (3d)

st = st−1 +
1

τs(Tt)
(rt − st−1) (3e)

ut = c.st.rt (3f)

where τs(Tt) in (3d) is a temperature dependent time constant that applies differ-
ential exponential weighting to the antecedent rainfall rt through the first order
equation (3e) that, as in the BM, models the changes in the storage state. This
time constant is assumed to be inversely related to the rate at which catchment
wetness (or potential evapo-transpiration) declines, which is arbitrarily defined as
a constant τs at 20oC. The parameter g is a temperature modulation factor which
accounts for the fluctuations in potential evapo-transpiration and determines how
τs(Tt) changes with temperature. Both parameters τs and g are unknown and are
estimated from the data. Finally, as in the BM, the effective rainfall ut is then
generated by the product of rt and st, with the constant scaling coefficient c intro-
duced so that the volume of the effective rainfall (rainfall excess) is equal to the
total stream flow volume over the estimation period.

Both the BM and IHACRES models are HCM models inferred from the rainfall-
flow-temperature data in an hypothetico-deductive manner. The BM has, per-
haps, less overtly conceptual reasoning in the definition of its equations than the
IHACRES model, which might be considered as hydrologically more acceptable.
But both, nonetheless, represent hypotheses about the storage dynamics and ef-
fective rainfall generation that are based on the prior perceptions of the modellers
(including the present author in the case of the BM model). The DBM model, on
the other had, relies much less on such prior perceptions and is based directly on
the inductive analysis of the rainfall-flow data. As a result, it is only as complex as
required to explain these data from the available measurements. In the case where
only rainfall and flow data are available, for instance, F(.) = F(yt) is defined much
more simply by the equation,

ut = c.f(yt).rt (4)
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In other words, the catchment storage terms st in the BM and IHACRES model
equations (3c) and (3f) are replaced by the simpler nonlinear function f(yt). The
physical significance of this nonlinear function is discussed in §7, below: for the
moment, it is sufficient to note that the inductive analysis has discovered that the
changes in yt can reflect the changes in the catchment storage sufficient to define
the nonlinearity in the rainfall-flow dynamics.

Typically, the form of the nonlinearity f(yt) is initially identified from the
rainfall-flow data through SDP estimation in non-parametric (graphical or ‘look-up’
table) form, without any prior assumptions about their nonlinear nature. This is
then parameterized in some simple manner: for example, in Young (1993), Young &
Beven (1994) and Young & Tomlin (2000), f(yt) is defined as a power law f(yt) = yγt
with the power law exponent γ estimated from the data. However, later research has
shown that other parametric functions may be more effective and this is a suitable
topic for future research (see Conclusions §10) The attraction of this SDP estima-
tion approach is that the nonlinear function f(yt) is inferred from the rainfall-flow
data and not assumed a priori, as in HCMs such as the BM and IHACRES models,
so leaving less room for unjustified over-confidence in the hypothetical definition of
the nonlinear model form.

The DBM model, even in the simple form of equations (1a) and (4), appears to
have wide application potential. In addition to rivers in Australia (e.g. Young et al.,
1997a,b) and the USA (Young, 2001b), it has been combined with an adaptive gain
updating scheme in the parameter-adaptive Dumfries flood warning system (Lees et
al., 1994), which has been operating successfully without major modification since
1991; and it is embedded within the Kalman Filter to provide a State-Adaptive
forecasting system for the River Hodder in NW England (see the example in §9
and Young & Tomlin, 2000).

(b) The Flow Routing Component

The generic flow (channel) routing model is much simpler than the rainfall-
flow model since it is now widely accepted that linear TF models are adequate
for the representation of flow dynamics in river systems. The discrete-time routing
model for a single stretch of river consists of a serial connection of channel storage
elements, each of which has the form:

yit =
B(z−1)
A(z−1)

yi−1
t−δi + ηt i = 1, 2, . . . , nr (5)

where nr is the number of reaches and the i superscript denotes the reach number.
This can be considered as the discrete-time equivalent of continuous-time differ-
ential equation storage equations (see e.g. Young, 1986). Normally, each of these
elements is only first or second order (as defined by statistical identification and es-
timation based on the up-stream and down-stream flow data). The complete catch-
ment routing model will consist of models such as this for the main river channels
and all their tributaries within the catchment, connected accordingly; and it can
involve any other measured in-flows as additions, inserted at appropriate nodal lo-
cations. The model will receive inputs from the rainfall-flow models discussed above
and, in examples such as the Dumfries flood warning model, from flow gauges far
upstream which provide advance warning of impending flow changes. A typical
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early example of such a model is that used for studies of the Bedford-Ouse river
system (Whitehead et al., 1975); more recent examples are the simple River Wyre
model (Young, 1986); the much more spatially complex Dumfries model (Lees et
al., 1992) and other models discussed in Cluckie (1993).

Note that we are restricting attention here to TF-based flow routing: this is not,
of course, the only form of flow routing and other approaches are often utilized,
although most of these can be considered in TF terms if this is desired (e.g. the
‘kinematic wave’ model used in the Thames Catchment Model: see Greenfield, 1984;
Moore & Jones, 1978). As in the case of the rainfall-flow models, flow routing TF
model parameters are normally obtained by the analysis of historical flow records
using similar statistical identification and estimation methods to those used in the
rainfall-flow example above.

7. Physical Interpretation of the TF Models

As we have stressed, an important aspect of DBM modelling is that the model can
be interpreted in physically meaningful terms. In this regard, let us consider first the
nonlinear effective rainfall equations (4). The relationship ut = c.f(yt).rt should not
be taken literally and interpreted as saying that the effective rainfall is physically
a function of flow. Rather, the measured flow yt is effectively acting here as an
objectively identified surrogate for the catchment storage st. This seems sensible
from a hydrological standpoint, since flow is clearly a function of the catchment
storage and its pattern of temporal change is likely to be similar. So, the nonlinear
function as a whole is similar in its motivation to that used in the BM and IHACRES
conceptual models and is justified similarly in physical terms.

The effective rainfall from equation (4) provides the input to the linear TF
model component (1a). If this TF is greater than first order and characterized by
real eigenvalues (the roots of the A(z−1) polynomial), as it normally will be, then
the TF can be decomposed into a parallel pathway form, with first order storage
equations in each pathway (see e.g. the discussion on the physical interpretation
of parallel TF models in Wallis et al., 1989; Jakeman et al., 1990; Young, 1992,
1993; Young & Beven, 1994; and Lees, 2000a,b). From this decomposition, it is
possible to compute the residence times (time constants); the advective time delays;
the percentage partition of the flow down each of the storage pathways; and even
the changing volumes associated with these pathways, all with obvious physical
significance. When dealing with hourly data, there are usually two such pathways
with very different dynamic characteristics. For example, in the case of the River
Hodder example considered later in §9, these take the form of:

• A quick-flow pathway described by a first order TF,

x1,t =
β1

1 + α1z−1
ut−4 (6a)

which has a partition percentage of 56%, a residence time of 5.5 h and an
advective time delay of 4 hours, so producing a total travel time of 9.5 hours;
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• A slow-flow pathway described by a first order TF,

x2,t =
β2

1 + α2z−1
ut−4 (6b)

with a partition percentage of 44%, a residence time of 84 h hours and a total
travel time of 88 h.

Given these derived model parameters, the most obvious physical interpretation
of the DBM is that the effective rainfall affects the river flow via two main pathways.
First, the initial rapid rise in the hydrograph derives from the quick-flow pathway,
probably as the aggregate result of the many surface processes active in the catch-
ment. And the long, elevated tail in the recession of the hydrograph arises from the
slow-flow component, most likely the result of water displacement (probably of old
water) from the storage within the groundwater system. Note that the estimate of
the flow contribution of this slow-flow component is also practically useful in other
ways: it provides a relatively objective estimate of the total base-flow in the river
and, as such, can be utilized for base flow quantification and removal, if this is
required, as suggested by Jakeman et al. (1990). This contrasts with the classical
IUH methods, where the base-flow has to be removed rather subjectively.

The linear TF is not always identified from the rainfall-flow data in the [2 2 δ]
form of the hourly Hodder model. For instance, in the case of ‘flashy’ catchments
with little storage, the model can be first order, normally [1 1 δ]. And sometimes it
can be more complex, implying the presence of more than two parallel pathways.
The commonest instance of this is in the case of daily data, where it is quite
normal to identify a [2 3 δ] model. Here, in addition to the quick and slow flow
pathways, there is an ‘instantaneous’ effect, with the rainfall causing run-off within
one sampling interval. This also occurs in the continuous-time hourly DBM model
mentioned later and described in Appendix A.

Finally, it must be emphasized that the estimated TF and its decomposition are
stochastic objects and so the uncertainty that is inherent in their derivation needs
to be taken into consideration when interpreting the model in physically meaningful
terms. As we shall see in the later example of §9, for instance, the data on which
the model is based are quite limited, so the flow decomposition described above
is uncertain. In particular, while the quick flow pathway dynamics are quite well
defined, the slow-flow pathway dynamics are highly uncertain

8. Data Assimilation: the Recursive Kalman Filter, State
and Parameter-Adaptive Forecasting

Most conventional methods of flow forecasting utilize the estimated (‘calibrated’)
model for generating forecasts. But if we are concerned with forecasting flow sev-
eral hours ahead, rather than with simply modelling the rainfall-flow data, then
it cannot be assumed that the estimated model of equations (1) and (2), or in-
deed any model estimated in a similar manner, provides the optimum vehicle for
generating such forecasts. The reason for this is obvious. The parameters of the
model are normally estimated by minimizing some form of cost function that in-
volves the error between the model generated flow and the measured flow, or the
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one-step-ahead prediction errors (as in ML estimation). However, the error that
is relevant for multi-step-ahead forecasting purposes is not the ‘fitting’ or simple
prediction error: it is the multi-step-ahead forecasting error based on the required
forecast lead time. In this section, therefore, we consider first how the multi-step
ahead forecasts can be generated by embedding the model within the Kalman Filter
(from hereon denoted by KF) prediction-correction equations. We then discuss the
optimization of the complete forecasting algorithm based on the mean square value
of multi-step-ahead prediction errors or some function of this measure.

Within the flood forecasting and warning context, a catchment model based on
rainfall-flow and flow routing TF models should not be considered as an end in
itself: rather, it is a major component of a data assimilation system that collects
data from remote sensors within the catchment and ‘blends’ these data with the
model in a statistical manner to produce forecasts for multiple time-steps into the
future. In the case of stochastic TF models such as those discussed above, an obvious
statistical framework for data assimilation is the KF, based on a Stochastic State-
Space (SS) formulation of the catchment model. It is straightforward to synthesize
such a stochastic SS model but it is normally complicated to present its complete
constituent equations. For illustrative purposes here, therefore, let us consider the
SS formulation in terms of a single, second order rainfall-flow model of the form:

yt =
b0 + b1z

−1

1 + a1z−1 + a2z−2
ut−δ + ξt ut = {cyγt }.rt (7)

with the parallel flow decomposition shown in (6a) and (6b).
In the simplest situation, where the ξt is a white noise process et, with variance

σ2, the SS form of the Hodder model can be written most conveniently in the
following form:

xt = Fxt−1 + Gut−δ + ζt (8a)
yt = hTxt + et (8b)

If, as discussed above, the model is decomposed into its parallel form, which has
a distinct advantage in forecasting terms (see the example below and Young &
Tomlin, 2000), then the matrices F, G and h in this SS formulation are defined
simply as:

F =
[
−α1 0

0 −α2

]
G =

[
β1

β2

]
ζt =

[
ζ1,t
ζ2,t

]
hT =

[
1 1

]

In this manner, the state variables are defined as the unobserved (hidden or latent)
quick and slow components of the flow, as defined by the decomposed, first order
TFs; and the hT vector combines these to form the complete flow output. The white
noise variables ζ1,t and ζ2,t are introduced to allow for the inevitable uncertainty
in the definition of the parallel pathway dynamics and are an important aspect of
this ‘state-adaptive’ approach to forecasting (see later).

For flow forecasting purposes, this state space model is used as the basis for
the implementation of the following, recursive, KF state estimation and forecasting
algorithm:
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A priori prediction:

x̂t|t−1 = Fx̂t−1 + Gut−δ

Pt|t−1 = FPt−1FT + σ2Qr

ŷt|t−1 = hT x̂t|t−1

A posteriori correction:

x̂t = x̂t|t−1 + Πt ·
{
yt − ŷt|t−1

}
Πt = Pt|t−1h[σ2 + hTPt|t−1h]−1

Pt = Pt|t−1 −ΠthTPt|t−1

ŷt = hT x̂t

In these equations, Pt is the error covariance matrix associated with the state
estimates; and Qr is the 2× 2 Noise Variance Ratio (NVR) matrix defined below.

(a) State Adaption

In the above KF equations, the model parameters αi, i = 1, 2 and βj , j = 1, 2
are known initially from the model identification and estimation analysis based
on the estimation data set. However, by embedding the model equations within
the KF algorithm, we have introduced additional, unknown parameters, normally
termed ‘hyper-parameters’ to differentiate them from the model parameters†. In
this example, these hyper-parameters are the elements of the NVR matrix Qr and,
in practical terms, it is normally sufficient to assume that this is purely diagonal in
form. These two diagonal elements are defined as NV Ri = σ2

ζi
/σ2, i = 1, 2. These

specify the nature of the stochastic inputs to the state equations and so define the
level of uncertainty in the evolution of each state (the quick and slow flow states
respectively) relative to the measurement uncertainty. The inherent state adaption
of the KF arises from the presence of the NVR parameters since these allow the
estimates of the state variables to be adjusted to allow for presence and effect of
the unmeasured stochastic disturbances.

Clearly, the NVR hyper-parameters have to be estimated in some manner on
the basis of the data. One well known approach is to exploit Maximum Likelihood
(ML) estimation based on Prediction Error Decomposition (see Schweppe, 1964;
Young, 1999b). Another, used later in the example of §9, is to assume that all the
parameters of the state space model (8a,b) are unknown and re-estimate them by
minimizing the variance of the multi-step-ahead forecasting errors. In effect, this
optimizes the memory of the recursive estimation and forecasting algorithm (Young
& Pedregal, 1999b) in relation to the rainfall-flow data. In this numerical optimiza-
tion, the multi-step-ahead forecasts ŷt+f |t, where f is the forecasting horizon, are
obtained by simply repeating the prediction step in the algorithm f times, without

† Of course this differentiation is rather arbitrary since the model is inherently stochastic and
so these parameters are simply additional parameters introduced to define the stochastic inputs
to the model when it is formulated in this state space form
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intermediate correction. The main advantage of this latter approach is, of course,
that the integrated model-forecasting algorithm is optimized directly in relation to
the main objective of the forecasting system design; namely the minimization of
the multi-step prediction errors.

(b) Parameter Adaption

Although the parameters and hyperparameters of the KF-based forecasting sys-
tem can be optimized in the above manner, we cannot be sure that the system be-
haviour may not change sufficiently over time to require their adjustment. In addi-
tion, it is well known that the measurement noise et is quite highly heteroscedastic:
i.e. its variance can change quite radically over time, with much higher variance
occurring during storm events. For these reasons, it is wise to build some form of
parameter adaption into the forecasting algorithm.

(i) Gain Adaption

It is straightforward to update all of the parameters in the rainfall-flow model
since the RIV/SRIV estimation algorithms can be implemented in a recursive form
that allows for sequential updating and the estimation of time-variable parameters
(Young, 1984). However, this adds complexity to the final forecasting system and
previous experience suggests that a simpler solution, involving a simpler scalar gain
adaption is often sufficient. This is the approach that has been used successfully for
some years in the Dumfries flood warning system (Lees et al., 1994) and it involves
the recursive estimation of the gain g(k) in the following relationship:

yt = gt.ŷt + εt (9a)

where εt is a noise term representing the lack of fit and, in the case of the second
order model (7),

ŷt =
b̂0 + b̂1z

−1

1 + â1z−1 + â2z−2
ut−δ ut = {cyγt }.rt (9b)

In other words, the time variable scalar gain parameter gt is introduced so that the
model gain can be continually adjusted to reflect any changes in the steady state
(equilibrium) response of the catchment to the effective rainfall inputs.

The associated recursive estimation algorithm for gt takes the usual Recursive
Least Squares (RLS) form in the case where gt is assumed to vary stochastically as
a Random Walk (RW) process (e.g. Young, 1984)†:

pt|t−1 = pt−1 + qg (9c)

pt = pt|t−1 −
p2
t|t−1ŷ

2
t

1 + pt|t−1ŷ
2
t

(9d)

ĝt = ĝt−1 + ptŷt {yt − ĝt−1ŷt} (9e)

where ĝt is the estimate of gt; while qg is the NVR defining the stochastic input
to the RW process, the magnitude of which needs to be specified (see later). The

† It is also a scalar example of Dynamic Linear Regression (DLR) algorithm (see Young,
1999b).
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adapted forecast is obtained by simply multiplying the initially computed forecast
by ĝt. Note that gain adaption of this kind is quite generic and can be applied to
any model, not just those discussed here.

(ii) Variance Adaption

To allow for the heteroscedasticity in et, it is necessary to recursively estimate†
its changing variance σ2

t . Although a logarithmic transform might suffice, a superior
approach is to use the transformation is ct = log(χ2

t ) + λ, where the stochastic
process χ2 defined by,

χ2
m = (e22m−1 + e22m)/2 m = 1, ...N/2 (10a)

in which λ = 0.57722 is the Euler constant. This is motivated by Davis & Jones
(1968), who showed that ct has a theoretical distribution which is almost normal.
As a result, an estimate ĥt of the transformed variance can be obtained from the
following recursive least squares (cf the above RLS algorithm for ĝt), where this
time it is ct that is assumed to vary stochastically as a RW process:

pt|t−1 = pt−1 + qh (10b)

pt = pt|t−1 −
p2
t|t−1

1 + pt|t−1
(10c)

ĥt = ĥt−1 + pt

{
ct − ĥt−1

}
(10d)

An estimate σ̂2
t of σ2

t can then be obtained as σ̂2
t = exp(ĥt − λ).

(iii) Hyper-parameter estimation

The RLS estimation algorithms (9) and (10) are very simple examples of the KF
and so it is necessary to estimate the hyper-parameters (here qg and qh) in some
manner. Their joint estimation with the KF hyper-parameters using some form of
combined optimization is difficult, however, and it is simpler in practice to consider
a more heuristic approach. For instance, it is well known that qg and qh control the
memory of their respective RLS estimation algorithms and the associated smoothing
of the estimate (e.g. Young, 1984). Consequently, since qg and qh are scalar values,
it is quite straightforward to manually optimize them to yield the best multi-step-
ahead forecasts.

9. An Illustrative Example: Adaptive Flow Forecasting for
the River Hodder in North West England

This example is concerned with the analysis and forecasting of hourly flow, mea-
sured during 1993, at Hodder Place gauging station on the River Hodder in North
West England. The River Hodder has a catchment area of 261 km2 and it forms part
of the larger River Ribble catchment area of 456 km2. The average annual precipi-
tation is 1600 mm and the mean flow is 8.42 m3s−1 (95% exceedance 0.969 m3s−1;

† a non-recursive ML formulation of this heteroscedasticity problem is given by Sorooshian
(1985)
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10% exceedance 21.46 m3s−1). The level-over-datum of the gauging station and
the maximum altitude in the catchment are 42 m and 544 m, respectively. The
catchment is very lightly populated: it has mixed farming at lower levels but is
mostly peat moorland, with millstone grit and carboniferous limestone. The flows
in the river can be affected by spillway operation and storage release from the
upstream Stocks reservoir but this effect is fairly small (mean flow 0.48m3s−1),
occurring almost entirely in Summer. Certainly, as we shall see, there appears to be
no discernible effect on the Winter flows considered in the present example. And,
of course, if there happens to be a very small random effect, then the stochastic
formulation of the DBM model is able to take account of this, provided most of the
downstream flow can be explained well by the rainfall.

DBM model identification and estimation in the present example is based on
720 h of hourly rainfall-flow data measured during January 1993, as shown in figure
2. The rainfall series rt, measured in mm h−1, is based on a Thiessen Polygon
average of three tipping-bucket rain gauges; while the flow series yt, measured in the
same units as the rainfall (computed by dividing the gauged volumetric flow rate by
the catchment area), is obtained from an Environment Agency flow gauge located
at Hodder Place. The subsequent validation and forecasting analysis is based on
a further 480 h of rainfall-flow data measured later, during December 1993, as
shown in figure 3. Young & Tomlin (2000) have previously used this second data
set to illustrate how a second order, nonlinear DBM model can provide the basis for
DBM modelling and KF-based flow forecasting, so the present analysis can be seen
as an extension of these earlier studies. It should be emphasized that these data
sets were not chosen to produce good results: indeed, the modelling and forecasting
problem they pose is quite difficult since the estimation sample size N = 720
covers a very short period (just over a month), the measured data (particularly the
rainfall) are not particularly good quality, and other associated data that might
assist in the analysis, such as temperature or soil moisture measures, were not
available for the present analysis. Note also that the validation data set exhibits
quite significantly larger maximum flow rates than those in the estimation data set,
so that the predictive and extrapolative ability of the nonlinear model is evaluated
in the face of this larger envelope of rainfall-flow conditions.

The modelling in this example is carried out in terms of discrete-time transfer
functions and associated discrete-time KF-based state space representations. It is
interesting to note, however, that it is possible to approach the problem within a
hybrid ‘continuous-discrete’ (CD) framework (e.g. Young, 1981); i.e. continuous-
time models estimated from the sampled data and an associated CD Kalman Filter
forecasting algorithm, with continuous-time prediction and discrete-time correction.
Although this approach has not been used very often in the past, it has the advan-
tage of presenting the models in a more transparent, differential equation form that
has immediate physical relevance. Moreover, this CD algorithm can handle non-
uniformly sampled data. Appendix A demonstrates the feasibility of this approach
by showing how a continuous-time model can be estimated from the same sampled
data used in the discrete-time analysis described below.
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Figure 2. Hourly rainfall-flow data for the River Hodder during January 1993.
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Figure 3. Hourly rainfall-flow data for the River Hodder during December 1993.

(a) Identification and Estimation

The first step in DBM modelling is the identification of an appropriate model
structure. Initial SRIV estimation of a linear, constant parameter TF model sug-
gests that both [1 1 3] and [2 2 4] models are well identified (they have the most
negative YIC values), with the latter yielding a respectable R2

T = 0.82 compared
with R2

T = 0.79 for the former. However, standard statistical tests for the parameter
constancy (e.g. Johnston & DiNardo, 1997) suggest strongly that the parameters
are varying in some manner. Moreover, initial SDP estimation based on these mod-
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Table 1. Model Identification

(Linear component of nonlinear model)

Linear Model R2
T YIC AIC σ2

Component

[1 1 3] 0.82 -9.1 -4.8 0.0081

[2 2 4] 0.84 -8.2 -4.9 0.0070

[3 2 3] 0.86 -5.7 -5.0 0.0065

els reveals significant state dependent parameter variation similar to that obtained
previously in the analysis of rainfall-flow data (e.g. Young, 1993, 2001b; Young &
Beven, 1994; Young et al, 1997; Young & Tomlin, 2000; Lees, 2000a,b). On this
basis, the following model structure is initially identified:

yt =
B(z−1)
A(z−1)

ut−δ + ξt (11a)

where the effective rainfall ut is defined in the form of a power law relationship in
the flow yt, which is acting as a surrogate measure of soil water storage, as discussed
earlier in §7, i.e.,

ut = f(yt).rt f(yt) = c.yγt (11b)

Here, the normalization coefficient c is is chosen so that, over the observation in-
terval of N samples,

∑N (ut) =
∑N (yt). Based on the linear model identification,

therefore, it is likely that the linear component model (11a) structure is either [1 1
3] or [2 2 4], although this needs to be verified during identification and estimation
of the nonlinear model.

The parameters in the identified nonlinear model equations (11a) and (11b)
are estimated by nonlinear least squares estimation using the leastsq optimization
procedure in MATLAB, in which the SRIV estimation algorithm is incorporated to
estimate the linear TF parameters†, with the effective rainfall function parameter
γ optimized concurrently within the optimization function. The most significant
results obtained in this identification stage of the analysis are shown in table 1.
Although, at first sight, the [1 1 3] model structure is identified well, simulation of
the model shows that it does not capture the recession part of the flow curve, which
is so important in hydrological terms and determines the nature of the base-flow
characteristics. Similarly, the third order [3 2 3] model has inherent limitations:
although it has the highest R2

T value, it also has a significantly higher YIC value,
suggesting over-parametrization. In addition, the residues of the associated linear
TF partial expansion include one negative value, implying a negative flow in the
parallel partitioning that is difficult to explain in physically meaningful terms. In
contrast to these other two identified models the [2 2 4] model can be interpreted
very well in physical terms, as shown below.

† A more sophisticated stochastic estimation procedure based on maximum likelihood opti-
mization of the associated state-space model (e.g. Young, 2000) would be preferable in statistical
terms but is more complex and not justified in the present illustrative context.
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Based on the above considerations, the finally estimated model takes the form:

yt =
b0 + b1z

−1

1 + a1z−1 + a2z−2
ut + ξt ut = {cyγt }.rt (12)

The optimized parameter estimates are as follows:

â1 = −1.821(0.012); â2 = 0.823(0.011); b̂0 = 0.102(0.0030); b̂1 = −0.1002(0.003);
γ̂ = 0.281(0.009); ĉ = 1.17

where the figures in parentheses adjacent to the estimates are the standard error
bounds. The noise model is identified as a third order AutoRegressive (AR(3)) model
(e.g Box and Jenkins, 1970) by the AIC and the associated parameter estimates
are:

ĉ1 = −1.114(0.037); ĉ2 = 0.507(0.052); ĉ3 = −0.153(0.037)

The model (12) has R2
T = 0.844 based on its response (simulation) error, while the

standard coefficient of determination based on the final stochastic residuals from
the AR(3) noise model (i.e. one-hour-ahead prediction errors) is R2

1 = 0.95. The
auto (acf) and partial (pacf) autocorrelation functions of these stochastic residuals
show no significant temporal correlation although, as normal in rainfall-flow models,
they are highly heteroscedastic (see later) and correlated to a minor extent with
the rainfall input†.

As required by the DBM modelling strategy, the model (12) can be interpreted
well in physically meaningful terms. Based on a partial fraction expansion of the
linear TF, as discussed in §7, it can be interpreted as a parallel connection of
two first order processes. The quick-flow process has a residence time of 5.5 h and
accounts for 56% of the total flow; while the slow-flow process has a residence time
of 84 h and and accounts for 44% of the flow. The estimated hydrographs (impulse
responses) associated with this parallel decomposition are compared in figure 4 with
the complete hydrograph of the TF model (12). It is clear that much of the initial
response is associated with the quick-flow pathway, while the main effect of the slow
flow pathway is to raise the longer-term tail of the hydrograph recession.

Note, however, that the derived parameter estimates that define the parallel
decomposition are not necessarily all that well defined statistically because of the
uncertainty in the estimated TF parameters. In particular, figure 5 shows some
of the results obtained from Monte Carlo Simulation (MCS: see Young, 1999a)
analysis based on 5000 random realizations and the SRIV estimated covariance
matrix of the TF model parameters. Despite high correlation between the basic TF
model parameter estimates, the empirical probability distribution function (pdf)
associated with the derived quick-flow residence time (right hand panel) is quite
well defined, with only small dispersion around the mean value, which coincides
with the estimated value of 5.5 h, as expected. In contrast, the empirical pdf of the
slow-flow pathway in the left hand panel is very poorly defined: the distribution is
highly dispersed and skewed markedly towards higher values with a very long tail.

† This small level of cross correlation between the model residuals and the input rainfall is quite
normal in rainfall-flow models of all forms and is probably linked in part with the heteroscedas-
ticity. It is not desirable, however, and suggests that further research on rainfall-flow models is
still required to remove this anomaly.
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Figure 4. Estimated unit hydrograph (unit impulse response) based on the DBM model
(full line); quick-flow component (dash-dot line); slow flow component (dashed line).

This is not surprising since the short term observational data used in the modelling
analysis is not providing nearly as much information on this long term mode as it
does on the quick-flow dynamics.
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Figure 5. Normalized histograms (empirical pdfs) of the slow (left panel) and quick
(right panel) residence times obtained by Monte Carlo Simulation (MCS) analysis.

Finally, the full line in figure 6 shows the effective rainfall coefficient plotted
against the flow yt, as defined by the estimated power law nonlinearity y0.281

t (recall
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Figure 6. Estimated effective rainfall coefficient plotted as a function of flow, which is
acting as a surrogate measure of soil-water storage. The dash-dot line shows the modified
nonlinearity arising from the optimized flow forecasting analysis.

that yt is acting here as a surrogate for a soil-water storage variable). This makes
good physical sense, since it shows that, as the implied soil-water storage variable
increases, so the proportion of rainfall that is effective in causing run-off increases,
but with the decreasing slope as the catchment becomes wetter. It can be shown
(Beven, 2001, p. 94; Lees, 2000a) that there are parallels between the form of this
nonlinearity and the hydrologic concept of a ‘dynamic contributing area’, as in
TOPMODEL (Beven & Kirkby, 1979) and the PDM (Moore, 1985).

(b) Adaptive Forecasting

As pointed out in §7, the estimated or ‘fitted’ model (12) does not necessarily
provide the best basis for multi-hour-ahead forecasting. In order to design the flow
forecasting system, therefore, it is necessary to re-optimize the model parameters,
and any other associated hyper-parameters of the KF based, for example, on a least
squares cost function in the error between the specified multi-hour-ahead forecast
and the measured flow over the estimation data set. Given the four hour advective
time delay in the model (12), it makes sense to assume here that the major objective
of forecasting in the present example is to optimize the four hour-ahead forecasts.
Of course, other cost functions could be used, such as a likelihood function based
on the four step-ahead forecasting errors, but this simple least squares cost function
will suffice for the present example and makes immediate physical sense, given the
nature of the forecasting problem defined here. In this illustrative example, the
length of the validation data set is not really sufficient to consider the updating of
all the model parameters but we are able to evaluate the effectiveness of the simpler
scalar gain and variance adaption procedures.
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Figure 7. Comparisons of four-hour-ahead flow forecasts (full line) and measured flow
(dash-dot line) for the period between 460 h and 560 h during January 1993. The dotted
lines show the standard error bounds.

Figures 7 to 9 show the forecasting results obtained over various sections of
the data using the KF forecasting system described in §8, optimized in the above
manner and incorporating both gain and variance adaption. Figures 7 and 8 show
forecasting within the estimation data set, while figure 9 shows how the system
performs on the validation data set during December 1993. Figure 9 also shows,
plotted from above, the adjustments to the gauged rainfall made by the nonlinear
effective rainfall coefficient. Note how, in the first two figures, the model forecasts
some false flow increases due to measured increases in the rainfall rt. This is not
unusual in rainfall-flow modelling and illustrates well the deficiency of this rain-
fall measure as a reliable quantification of the rainfall causing flow at the Hodder
Place flow gauging station. It also demonstrates how the ultimate accuracy of flow
forecasting and warning is critically dependent on good rainfall measurement and
estimation at the catchment scale.

It should be emphasized that the nonlinear rainfall-flow model parameters and
hyper-parameters used over the validation data set are those optimized on the basis
of the estimation data set alone; and they are maintained at these values over the
whole of the validation data set. Given the limited size of the estimation data set,
however, it is not surprising that this model is not entirely appropriate for the later
December 1993 period and the gain and variance adaption mechanisms are active
in improving the forecasts, as we see later.

The model used to generate the results in figures 7 to 9 is the same form as the
model (12) but the optimized parameters, within this four-hour-ahead forecasting
setting, are as follows:

â1 = 1.814(0.016); â2 = 0.817(0.015); b̂0 = 0.1006(0.0031); b̂1 = −0.0973(0.003);
γ̂ = 0.187(0.012); N̂V R1 = 0.57(0.11); N̂V R2 = 0.821(0.46); ĉ = 1.17

q̂g = 0.000001; q̂h = 2.5

The modified effective rainfall nonlinearity is shown as the dash-dot line in figure
6. The estimated noise model in this case is identified by the AIC as a much higher
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Figure 8. Comparisons of four-hour-ahead flow forecasts (full line) and measured flow
(dash-dot line) for the period between 620 h and 720 h during January 1993. The dotted
lines show the standard error bounds.
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Figure 9. Comparisons of four-hour-ahead flow forecasts (full line) and measured flow
(dash-dot line) for the period between 280 h and 480 h during December 1993. The dotted
lines show the standard error bounds. The plot above illustrates is dt, the difference
between the gauged rainfall rt and the effective rainfall ut subtracted from 3.5, for clarity:
i.e. dt = 3.5− (rt − ut).

order AR(9) process but, for simplicity, forecasting here is based only on the state
space model for the decomposed second order TF model (see §7). This means that
the forecasting performance discussed below could be improved by the addition of
the AR(9) noise model and the associated augmentation (from 2nd to 11th order)
of the state space model used for KF forecasting system design.

The gain and variance adaption operative over the whole estimation-validation
period (concatenated for clarity) are shown in figures 10 and 11. In figure 10, we see
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Figure 10. Recursive estimate of the adaptive gain parameter over the full concatenated
data set, showing the significant reduction in the estimated value over the December 1993
portion of the data. The mean(std) estimates are 0.996(0.006) for January and 0.982(0.005)
for the final 300 h in December: these are plotted as dashed lines with dotted std bounds.
The nominal unity value is shown as dash-dot line.

that the adaptive gain ĝt reduces significantly after sample 720 h when forecasting
begins over the December 1993 validation period. This indicates the value of such
adaption in correcting for any deficiency in the estimated model. The importance of
the heteroscedastic noise is illustrated in figure 11, where we see that the estimated
residual series variance changes markedly over the whole validation period, with
particularly large changes estimated over the two major rainfall episodes around
samples 900 h and 1150 h, where the heteroscedasticity is particularly significant.

The effect of introducing the variance adaption is particularly noticeable in the
standard error (se) bounds on the four-hour-ahead forecasts plotted in figures 8 and
9, where the bounds widen considerably over the peak flow periods. This would not
happen in the standard KF algorithm, as pointed out by Lees (2000a). To illustrate
this, Lees carries out off-line analysis of his forecasting results and applies a Box-
Cox transformation to the forecasting residuals. He then computes the empirical se
bounds, showing how they reveal clearly the increased uncertainty over the peak
flow periods. In this regard, it should be emphasized that the se bounds in figures
7 to 9 are estimated on-line and in real time as an inherent part of the variance
adaptive KF algorithm and are not computed empirically off-line. In other words,
the user is informed of this increased uncertainty in real-time and can judge the
potential for flooding within the next few hours accordingly.

Table 2 gives some indication of the forecasting performance achieved here (as
measured by appropriately defined coefficients of determination, R2

i ) when com-
pared with other forecasting procedures under various settings of the forecasting
system. The two other forecasting options are: (a) the ‘standard’ TF forecasting
system in which the TF model (12) is used directly in its full TF form, without
parallel decomposition or incorporation in the KF; and (b) the näive forecasting
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Figure 11. Recursive estimate of the adaptive noise variance parameter. The upper panel
shows the estimate over the full concatenated data set. The lower panel is an enlarged
view of the significantly heteroscedastic period between samples 1145 h and 1175 h, during
December, 1993.

system, in which the four-hour-ahead forecast ŷt+4 at any sampling instant t is
simply set to the flow measurement yt. At first, these comparative results are sur-
prising, since it is clear that the näive forecaster performs better than the standard
TF forecaster based directly on the model (12). The main reason for this is that,
as it stands, the TF model (12) is not good for forecasting because the numerator
parameters in the TF model are approximately the same value and different in
sign. This induces a near-differencing operation and causes ‘spikes’ in the forecasts
that considerably degrade the forecasting performance. This problem is completely
avoided by the physically meaningful decomposition of the TF and its incorpora-
tion, in this decomposed form, within the KF forecasting engine.

Finally, although the forecasting system here has been designed for 4-hour-ahead
forecasts, it produces forecasts for any requested forecasting interval. For instance,
the coefficients of determination for the forecasts over all lead times from 1 to 6,
R2
i , i = 1, 2, ..., 6, are given below:

R2
1 = 0.874;R2

2 = 0.856;R2
3 = 0.847;R2

4 = 0.842;
R2

5 = 0.764;R2
6 = 0.658

Of course, the forecasts for periods other than four hours will not necessarily be
optimal and may be improved by explicit optimization for the specified forecasting
interval. For instance, the comparative figures obtained when the optimization is
based on separate optimization at each sampling interval is as follows:

R2
1 = 0.939;R2

2 = 0.877;R2
3 = 0.845;R2

4 = 0.842;
R2

5 = 0.767;R2
6 = 0.658

So we see that worthwhile advantage is obtained in the case of forecasting inter-
vals from one to three-hours-ahead. This would require 3 additional KF algorithms
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Table 2. Comparative Forecast Evaluation

(Comparison of R2
i values obtained from various forecasting situations)

Level of 4-step 1-step 4-step: no decom- Näive

Adaption ahead ahead position, no KF forecast

Only state adaption (sa) 0.820 0.876 0.313 0.461

sa + gain adaption 0.834 0.882 0.328 0.461

sa + variance adaption 0.841 0.876 0.350 0.461

sa + both 0.842 0.874 0.358 0.461

acting in parallel, the algorithms are so simple that the increase in the computa-
tional burden is quite acceptable. Also, note how the forecasts are degraded more
for forecasting intervals greater than four hours. This is because, after this interval,
it is necessary to forecast the rainfall into the future and here, these forecasts are
simply set to zero. Improved performance would be expected, therefore, if rainfall
forecasts were available for forecasting intervals greater than four hours.

Table 2 shows that both gain and variance adaption are effective when applied
independently, with the variance adaption providing the larger improvement. When
used together, the improvement in the four-hour-ahead forecasting performance is
only marginally better than that achieved by the variance adaption alone. The rea-
son why the simultaneous implementation of the two adaption algorithms does not
lead to further improvement is probably because of interaction between them. And
it probably suggests that there is room for improvement in the design of such adap-
tion techniques. Nevertheless, the improvement over the situation with no adaption
is obviously worthwhile and would probably be greater than this if a longer and
more realistic time period was considered. In the case of the Dumfries flood warn-
ing system, for instance, the gain adaption has proven very beneficial over many
years and has considerably reduced the frequency of full re-calibration. Moreover,
as pointed out above, the variance adaption improves the real-time estimates of the
se bounds and so is beneficial for this reason alone.

10. Conclusions

This report describes some recent advances in stochastic modelling and forecasting
that provide the basis for the implementation of real-time flow and flood forecasting
systems. It argues that deterministic reductionist (or ‘bottom-up’) models are inap-
propriate for real-time forecasting because of the inherent uncertainty that charac-
terizes river catchment dynamics and the problems of model over-parametrization
that are a natural consequence of the reductionist philosophy. The advantages of
alternative Data-Based Mechanistic (DBM) models, statistically identified and es-
timated in an inductive manner directly from rainfall-flow data, are discussed. In
particular, the report shows how nonlinear, stochastic, transfer function models can
be developed using powerful methods of recursive time series analysis. Not only are
these models able to characterize well the rainfall-flow dynamics of the catchment
in a parametrically efficient manner but, by virtue of the DBM modelling strategy,
they can also be interpreted in hydrologically meaningful terms. Most importantly
in the forecasting context, the models are also in an ideal form for incorporation
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into a data assimilation and forecasting engine based on a special, adaptive version
of the Kalman Filter algorithm.

The practical example described in the paper demonstrates how, with the mini-
mum of rainfall-flow data and no available rainfall forecasts, the approach proposed
here can generate useful flow forecasts for several hours ahead; forecasts that could
form the basis for flood warning system design. Such a system would be a natu-
ral development of the Dumfries flood warning system (Lees et al., 1994), which
was designed from a similar DBM modelling standpoint and has been operating
successfully without major modification since 1991. The methodological advances
described in the present paper would ensure much improved performance from such
a system but the basic minimalist design and low economic cost of development
would be retained. Both of these recursive approaches to real-time forecasting can
be contrasted with more conventional, non-recursive, real-time forecasting proce-
dures proposed previously. A typical example is the adaptive scheme suggested by
Brath & Rosso (1993) which addresses some of the same statistical issues raised in
the present paper. However, it operates on an event basis rather than continuously;
it uses repeated en-bloc optimization rather than recursive estimation; it is based on
a simple conceptual model with a priori assumed structure and parameterization;
and it is computationally much more demanding.

Of course, there remain a number of methodological problems still to be solved.
The DBM models discussed in the paper perform well but they cannot be consid-
ered completely satisfactory while the model residuals retain their current unsatis-
factory statistical characteristics. In particular, the correlation remaining between
the residuals and the rainfall input shows that the model is still not fully explain-
ing the complete rainfall-flow process (although the remaining unexplained variance
represents only a small proportion of the total variance). This limitation of the cur-
rent DBM models (shared, the author believes, by all current rainfall-flow models,
whatever their type) is almost certainly due to deficiencies in the effective rainfall
nonlinearity and possibly the presence of other, smaller nonlinearities in the system
as yet unquantified. There is clear need for more research on this fascinating subject
and, although such research would require the analysis of a large and comprehen-
sive rainfall-flow data base covering a wide array of different catchment behaviour,
it would provide useful information for all existing rainfall-flow modelling studies,
not just those discussed in this paper.

This future research could be based on an extension of the DBM models dis-
cussed here within the existing Kalman Filter forecasting system. Or it could involve
the use of more sophisticated but computationally intensive Bayesian updating pro-
cedures which exploit on-line Monte Carlo Simulation (MCS). Early use of MCS
in hydrology (e.g. Whitehead and Young, 1979) was inhibited by computational
limitations but, in recent years, the advances in computers have led to an explosion
of research in this area. As a result, there are a wide spectrum of MCS methods are
available ranging from Markov Chain Monte Carlo (MCMC: see e.g. Gammerman,
1997), through Monte Carlo filtering algorithms (e.g. Kitagawa, 1996, 1998; Thie-
mann et al., 2001), to simpler non-recursive approaches such as the GLUE procedure
(Beven & Binley, 1992). Research is continuing on the best approach in the present
context but simple Monte Carlo extensions to the adaptive KF described above are
yielding promising results. The gain and variance adaption procedures presented
in the present paper also require further development: although they enhance the
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forecasting performance, they are still not entirely satisfactory in theoretical and
practical terms.

Finally, the models considered in the paper are all of a ‘lumped parameter’
variety (i.e. they consist of the linear and nonlinear transfer functions that are
the discrete-time equivalents of differential equations and describe the temporal
behaviour only at selected spatial nodes within the catchment system). The al-
ternative ‘distributed parameter’ models, which involve spatio-temporal aspects of
the catchment and are described by models such as partial differential equations in
time and space (or some equivalent of these), have not been considered at all. Such
models are clearly attractive in these days of Geographical Information Systems
(GIS) and weather radar, since they are, potentially at least, able to exploit spatial
information of this type.

Within a flood forecasting system, such distributed models are of particular
relevance because they can hope to predict the spatio-temporal progress of flood
inundation, as in Romaowicz and Beven (1998) and Beven et al.(2000). However,
the parenthetical comment in the title of the latter paper ‘Mapping the probability
of flood inundation (even in real time)’ hints at the difficulties of using such com-
putationally intensive models in real-time applications, even if the other theoretical
and practical problems associated with such models could be solved. But they are,
nonetheless, an important topic of continuing research and the continuing evolution
of the digital computer will undoubtedly resolve the computational problems in the
not too distant future. In the mean time, there is room for research on the amalga-
mation of distributed and lumped parameter concepts, with the distributed models
of rainfall and its distribution throughout the catchment providing improved esti-
mates and forecasts of the rainfall inputs. For, as we see in the example of §9, it is
the inadequacy and inconsistencies of the rainfall inputs that appears to most limit
the accuracy of the flow and flood forecasts.
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Appendix A. Continuous-Time Modelling

A major advantage of instrumental variable estimation, in general, and the SRIV
algorithm, in particular, is that it can be used to estimate models in continuous
or discrete time from discrete-time sampled data (Young & Jakeman, 1980; Young,
1996). To illustrate this facility, the following continuous time TF was identified
and estimated from the January 1993 estimation data set:

y(t) =
β0s

2 + β1s+ β2

s2 + α1s+ α2
u(t− 4) + ξ(t)

where s is used here as the differential operator, i.e. sny(t) = dny(t)/dtn and ξ(t) is
the continuous-time equivalent of the noise. The estimated parameters in this case
are as follows:
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α̂1 = 0.167(0.009); α̂2 = 0.0012(0.0003); β̂0 = 0.066(0.007); β̂1 = 0.106(0.004);
β̂2 = 0.0013(0.0003); γ̂ = 0.2807(0.012); ĉ = 1.17

This model explains the data marginally better than the discrete-time model (12)
with R2

T = 0.845 but, as can be seen, an additional numerator parameter is required.
The parallel flow decomposition of this TF can be considered in the following

differential equation form:

• An instantaneous pathway with gain of 0.066 and a partition percentage of
6%

• A quick-flow pathway described by a first order TF,

6.3
dy(t)
dt

= −y(t) + 0.574u(t− 4)

which has a partition percentage of 54%, a residence time of 6.3 hours and
an advective time delay of 4 hours, so producing a total travel time of 10.3
hours;

• A slow-flow pathway described by a first order TF,

135
dy(t)
dt

= −y(t) + 0.427u(t− 4)

with a partition percentage of 40%, a residence time of 135 hours and a total
travel time of 139 hours.

Clearly, these estimated dynamic characteristics are not the same as those obtained
for the discrete-time model in §8(a) but they are consistent if the uncertainty in
the parameter estimates is taken into account (see e.g figure 5: the sizes of the
uncertainty bounds obtained via MCS are similar for the continuous-time model:
a continuous-time example of such MCS analysis is given in Young, 1999a). These
differences would make a small difference to the forecasting performance if a CD
implementation was preferred, but it is unlikely that this difference would be very
significant. The main advantage of the continuous-time model is clear from the
above decomposition: the model for each flow pathway is defined directly by the
estimated parameters of first order differential equation model for the pathway,
so that the model is transparent and immediately interpretable in a physically
meaningful manner.
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