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1. Introduction

It is always good practice in scientific research to keep an eye on other, similar

disciplines and try to improve one’s own methods in relation to relevant advances in

other areas. Many times, one discovers that isolation causes some very perverse effects

on the development of science. As Keynes said in The General Theory (Keynes, 1936),

“It is astonishing what foolish things one can temporarily believe if one thinks too long

alone, particularly in economics (along with the other moral sciences), where it is often

impossible to bring one’s ideas to a conclusive test either formal or experimental”

In this regard, there is no doubt that economists have made many important

contributions to the methodology of time series analysis; contributions that are not only

of significance to economics but also have relevance to other scientific disciplines where

their influence has been considerable in the past. On some occasions, however, some

economists either seem unaware of, or misinterpret, developments in other areas of

mathematics and engineering. A case in point is part of the econometric literature in

favour of, or in opposition to, the use of the Hodrick-Prescott filter (HP hereafter;

Hodrick and Prescott, 1980; 1997), which seems to view the subject of signal filtering in

a peculiarly myopic manner. Probably the best papers in favour of the HP filter are the

HP reference itself and most of the Real Business Cycle literature (RBC; mainly all

those deriving from the ‘Minnesota School’). On the other hand, there have been quite a

large number of detractors from such a point of view, one of the most representative

criticisms being Cogley and Nason (1995; CN hereafter).

Within an economic context, the emergence of the HP filter and its attribution clearly

derives from two major facts. First, HP used the filter for estimating (and so removing)

long term trends from macro-economic time series. Second, HP specified a filter

bandwidth (via a fixed value of the smoothing parameter or Lagrange multiplier λ )



in quarterly macro-economic time series. In a more general context, however, we are not

sure why the HP filter is given its particular attribution, particularly since it was not the

first use of such a filter and the HP paper took about 17 years to appear in the open

literature.

Certainly, the basic idea behind this particular ‘smoothing’ filter was certainly not

originated by HP but was derived from much earlier work by others. For example, an

early proposal to solve the data smoothing problem in the same general manner as HP

was by Whittaker (1923). Later, Stigler (1978) pointed out that a similar algorithm was

used by actuarial scientists in the 1920's; and von Neuman apparently used it in the

ballistics literature in the 1940's, as acknowledged by Prescott (see Kydland and

Prescott, 1990; Hodrick and Prescott, 1997). In addition, the whole approach can also be

considered from the standpoint of spline fitting (e.g. Reinsch, 1967); while, more

recently still, Schiller (1973) and Akaike (1980) have developed similar approaches

within a Bayesian statistical setting.

In more general terms, it has been shown (Jakeman and Young, 1979, 1984; Young,

1991; Young and Pedregal, 1996) that exactly equivalent smoothing results to those

obtained from the HP filter (and its relatives) can be obtained by posing the smoothing

problem in stochastic State Space (SS) terms and using a recursive Fixed Interval

Smoothing (FIS) solution to the problem. This approach was also proposed by other

researchers in the early 1980’s, such as Brotherton and Gersch (1981). And it underlies

the later explosion of research on the use of SS methods for forecasting and signal

extraction applied to Unobserved Component (UC) and ‘Structural’ models of

nonstationary time series (e.g. Harvey, 1984,1989; Young et al., 1989. Hodrick and

Prescott 1997) acknowledge these similarities, but without any reference to the

smoothing part of the algorithms.



The purpose of the present paper is not only to draw attention to what we believe are

some misleading conclusions in part of the research publications that have favoured the

HP filter, but also to point out other rather misleading conclusions found in some papers

that have criticised it. Let there be no doubt that, like CN, we deplore the uncritical use of

the HP filter, which is better viewed as a rather limited version of a more general class of

smoothing filters (see below and Young and Pedregal, 1996). We agree entirely that it

can yield misleading results if used uncritically. But, unlike CN, we are not prepared to

reject such simple smoothing filters out-of-hand and so ‘throw the baby away with the

bath water’. If used with discretion, there is no doubt that they yield extremely fast

results and can prove very useful for the initial, exploratory analysis of time series.

Indeed, the FIS equivalent of the HP filter (but with the sensible addition of a user-

specified, rather than fixed, bandwidth) has been available for more than twenty five

years in our microCAPTAIN computer program1. Here, it is used very effectively for

just this kind of exploratory analysis, with the user specified smoothing parameter

carefully defined in relation to the spectral properties of the data (e.g. the periodogram

or, preferably, the autoregressive (AR) spectrum).

2. General Comments

The HP filter can be interpreted in least squares optimisation terms, with the smoothness

introduced by the addition of a Lagrange multiplier term that penalises the second

difference of the estimated trend. But this approach, which is termed ‘regularisation’ in

the numerical analysis literature, is not the only way of formulating this smoothing

problem. For example, it has been pointed out (Jakeman and Young, 1979, 1984; Young,

1991; Young and Pedregal, 1996) that deterministic regularisation is the exact equivalent

of recursive Kalman filter/FIS estimation based on a stochastic SS formulation of the

                                                

1 A new version of this MS-DOS program is the multi-platform, CAPTAIN Time Series

Analysis and Forecasting Toolbox in Matlab. Information about this software is available in

http://cres1.lancs.ac.uk/captain/   and a beta-test version is available from the second author.



problem. Moreover,  the stochastically defined equivalent of the HP filter (which is

termed IRWSMOOTH in microCAPTAIN) is obtained quite simply when the trend is

modelled as an Integrated Random Walk (IRW) process2. Here, the ‘Noise Variance

Ratio’ (NVR), defined as the ratio of the variances of the white noise input to the IRW

process and the assumed white observation noise, serves exactly the same smoothing

function as the inverse of the Lagrange multiplier λ  in the regularising functional.

This complementary formulation of the smoothing problem is established most

transparently by reference to traditional Wiener-Kolmogorov filter theory, which shows

that the low frequency estimate of the trend ˆ T t  is related to the input time series yt  by

the equation (see e.g. Young, 1994; Young and Pedregal, 1996),

ˆ T t =
NVR

NVR + (1 − L )2(1 + L−1)2 yt (1)

where L  is the lag (backward shift) operator. From this result, it is easy to demonstrate

some extremely interesting, and perhaps rather surprising, properties of HP-

IRWSMOOTH derived trends. For instance, Pedregal (1995) and Young and Pedregal

(1996) show that the fourth difference of the estimated trend is exactly equal to the

detrended series, lagged by two samples and re-scaled by a factor that is exactly equal to

the NVR parameter (equivalently 1/ λ ) used in the FIS estimation! And since FIS

estimation is exactly equivalent to regularisation, Wiener-Kolmogorov smoothing and

cubic smoothing spline estimation, this result also applies equally to these other

methods.

The link between the non-recursive, deterministic regularisation and recursive, stochastic

FIS estimation has most important connotations. In particular, we believe that SS

                                                

2 Harvey (1989) would refer to this as a Local Linear Trend model with the variance of the

noise on the trend  state constrained to zero. However, the IRW terminology has been in use for a



formulation of FIS estimation has many theoretical and practical advantages over the

regularisation approach. Probably the main one is its flexibility, since the SS

formulation facilitates the inclusion of more and diverse components into the model

(such as seasonal components, influences of exogenous variables via regression

variables or transfer functions, multivariable models, etc.). It is also computationally

more efficient and allows inherently for aberrations in the data such as missing

observations or gaps and abrupt changes in level or slope (see Young and Ng, 1989).

Moreover, the recursive formulation is ideal for adaptive forecasting and backcasting

outside the data, as well as on-line utilisation, in applications such as adaptive signal

processing, forecasting and control (e.g. Young et al, 1999). And the FIS algorithms can

also be extended easily to detect and allow for outliers, including automatic ‘robustness’

modifications, which are particularly simple in recursive processing. Such extensions are

not so natural and, where feasible, they are much more complicated to implement in the

regularisation approach (see e.g. Akaike, 1980).

Finally the stochastic formulation of the SS formulation allows for two additional

advantages. First, it means that it is easy to optimise ‘hyper-parameters’, such as the

smoothing parameter NVR (or 1/ λ ), using maximum likelihood methods based on

prediction error decomposition (Schweppe, 1965) or some equivalent method.

Secondly, under the Gaussian assumptions inherent in the standard SS approach, the

statistical properties of the extracted components are provided by the FIS algorithm, so

that standard error bounds are a natural consequence of the analysis. These are not

provided by the ‘deterministic’ HP regularisation algorithm.

3. Spurious Cycles and Artificial Co-Movements

The HP filter has been applied at least in two main ways. Firstly, it has been used as an

alternative to simple differencing for inducing level-stationarity in economic time series.



Secondly, it has been used as a means to characterising the business cycle and to detect

co-movements in time series. In the former case, it is well known that differencing,

promoted by Box and Jenkins (1970) as a way of removing stochastic trends in the time

series, results in an amplification of the high frequency components of the signal. On

the other hand, the HP-IRWSMOOTH filter extracts the trend with specified

attenuation (depending on the λ  or NVR parameter) of the remaining spectral

information. These two ways of removing the secular trend in time series have

encouraged the development of a theoretical distinction between Trend Stationary (TS)

and Difference Stationary (DS) series.

There are a number of specific criticisms made by most researchers who do not favour

the use of the HP-IRWSMOOTH filter. Perhaps the most controversial point, stressed

for example by CN, is the warning that possible artificial ‘co-movements’ may be

detected in USA macroeconomic time series due to spurious cycles created by the filter.

The main line of this argument is that the spectrum of the remaining ‘cyclical’

component yt − ˆ T t , as obtained after detrending the data by the HP filter, includes an

‘artificial’ spectral peak that is related more to the properties of the filter than those of

the series itself3. They then point out that the cyclical-like behaviour arising in the de-

trended series from the presence of this spectral peak can lead to the detection of

artificial co-movements in similarly analysed time series.

CN seek to demonstrate the possibility of such spurious co-movements among variables

by examining the Cross Correlation Functions (CCF’s) between filtered variables in a

number of real and simulated data examples. It is certainly true that any signal

processing filter, by definition, attenuates the power in certain parts of the frequency

                                                

3 Note that the use of the difference operator as a device to remove trends has a similar problem, i.e. it

removes the trend but induces amplification of high frequency cycles  that may not be of importance to

the primary purposes of the analysis.



spectrum and so effectively enhances the power at other parts of the spectrum. But it is

also equally true that the uncritical use of CCF’s to infer relationships between the

filtered variables obtained in this manner can itself lead to misleading conclusions, as we

demonstrate later.

Of course, it is entirely correct for CN to conclude that cycles formed by the smoothing

of Random Walk (RW) simulated data are likely to be spurious. But real data rarely

constitute an RW process and, if they do not, then any extracted cycles may well be

explained in physically meaningful terms.  For example, if the spectral properties of the

‘actual’ cycle are known, it is easy to define a value of λ  that corresponds to the

relevant band-pass for extracting this ‘actual’ cycle. Of course, it is unlikely that this

value will be the standard λ  value (1600) proposed by HP, except in the case of a

business cycle in quarterly data. And it is clearly unlikely that, in these circumstances, a

cycle so extracted will be ‘spurious’. In any case, time series analysts are not likely to

depend for their inferences on one specific method of signal processing alone. Surely

most analysts will only accept an extracted cycle as being meaningful provided its

presence is supported by other evidence and a properly conducted statistical analysis of

the filtered data (see section 4 below) does not question the inference.

Another problem with the analysis of CN and other detractors of filtering approaches to

signal extraction lies in their use (following HP) of a constant value for the smoothing

parameter λ  (1600) and, thereby, a fixed specification of the filter bandwidth. This fixed

value may be appropriate for American macroeconomic quarterly series (as HP suggest)

but it is clearly not appropriate in other applications not involving quarterly series.

Indeed, if it is used with other data (e.g. monthly, annual etc.) then this fixed parameter

filter will almost certainly yield spurious extracted cycles. But what time series analyst

worth his salt would arbitrarily use an arbitrarily fixed bandwidth, low-pass filter in

these circumstances?



4. Have Previous Critiques of Filtering Methods Been Fair and Valid?

Given the above comments, it is clearly important to consider further the arguments of

those who stress the problem of spurious cycles and meaningless co-movements in

filtered time series. In order to illustrate their argument about spurious co-movements,

CN, for example, utilise both simulation and real examples. Relying on the spectra and

CCF of detrended simulated series, they conclude that the extracted signals show co-

movements and cross correlation at different lags from zero, even when such

relationships do not exist. From these results, they conclude that the HP filter creates

spurious co-movements that are more ‘artifacts’ of the analysis than ‘stylised facts’

about the series.

In order to illustrate our counter-arguments, we will utilise similar simulation results. In

particular, we consider simulated data generated by the following model (as used by

CN):

xt =
et

∇
          

y1t =
ξ t

∇
y2t =

ηt

∇
   and  ηt = et +ν t

(2)

where et  , ξ t  , and ν t  are independent and identically distributed, N(0,1), white noise

processes and ∇ = 1 − L . In other words, xt  and y1t  are a pair of RW models whose

associated white noise inputs are independent of each other; while the white noise inputs

associated with y2t  and xt  are correlated at zero lag (the variance ratio of ν t  to et  is 0.8).

Figs 1 and 2 present some interesting results obtained when the HP-IRWSMOOTH

filter is applied to the series xt ,y1t  and y2t  obtained from the simulation of (2) using the

HP-favoured smoothing parameter λ =1600 (NVR=1/1600=0.000625). Fig.1 compares

the three detrended series via time series and scatter plots; while Fig.2 shows the



removes some common frequencies in both series, this does not imply that all the series

show co-movements that relate to each other. In the time series and scatter plots of Fig.1,

for instance, simple visual appraisal shows that the first pair of RW’s are probably not

correlated; whilst the second pair are obviously correlated at lag zero.

On the other hand, it is clear that the periodogram and CCF plots in Fig.2 can be used

incorrectly, in the manner of CN, to suggest that there is a relationship between the

detrended variables. In fact, such plots only show that the series have similar spectral

properties; they do not show that the temporal properties and, therefore, the co-

movements, are similar. The reason why the CCF plots can be highly misleading in this

regard is that they are being used and interpreted incorrectly in statistical terms. Is it not

well known that, because of the autocorrelation in the detrended, cyclical component

introduced by the smoothing operation, the CCF must be considered with great care? In

particular, the need to ‘pre-whiten’ autocorrelated time series prior to CCF analysis in

time series modelling has been acknowledged for a long time and is an important aspect

of the initial identification analysis suggested by Box and Jenkins (1970) for transfer

function modelling. Only when the pre-whitening operation has been carried out does

the CCF relate to the ‘correct’ relation between variables.

(INSERT FIGURES 1 AND 2)

In the present example, this is demonstrated well by Fig.3, which shows the CCF’s

subsequent to the pre-whitening of the detrended series4. Now, the truth is exposed: we

see that, unlike the equivalent CCF plots in Fig.2, the detrended y2t  and xt  series are

very significantly correlated at lag zero; and, as would be expected, the CCF sample

estimate is close to the theoretical, simulated correlation of 0.8. On the other hand, again

as expected, there is no statistically significant correlation indicated at all between the

                                                

4 The pre-whitening filters where identified using standard tools, that suggested AR(2) models.



detrended y1t  and xt , series. It is clear from these results that pre-whitening is essential

in these circumstances. The spuriousness found by CN is, in fact, an artifact induced by

the incorrectly applied CCF analysis. It is not, as they imply, a property of the detrended,

cyclical components that could be considered, in any way, meaningful in real terms.

(INSERT FIGURE 3)

Similar results apply to real data. For example, figure 4 shows the detrended

unemployment rate and GNP for the USA between the second quarters of 1948 and

1998 using again the HP-favoured smoothing parameter λ =1/1600 (NVR=0.000625),

together with the sample CCF between the raw series without and with pre-whitening.  A

simple inspection of the figure shows that there is a clear negative relation between both

series. From the CCF without pre-whitening, a simultaneous dynamic relation would be

inferred; but a refined analysis, after pre-whitening, shows that, apart from the

contemporaneous correlation, GNP leads unemployment.

Indeed, the CCF in figure 4 can be utilised as a precursor to dynamic modelling of the

relationship between GNP and unemployment, since it is directly proportional to the

impulse response of such a model (see e.g. Box and Jenkins, 1970, p. 379 et seq).

Indeed, the efficacy of such CCF impulse response identification analysis in this

example can be verified by direct discrete-time Transfer Function (TF) identification and

estimation, based on the detrended data. This yields the following TF model:

yt =
−0.01

1 − 0.467L
ut +

1 − 0.90L − 0.08L2

1 −1.60L + 0.71L2 et (3)

where yt  is the detrended unemployment series; ut  is the detrended GNP series; and  et

is a residual N(0;0,08) white noise process.  The impulse response of the deterministic



part of this model (the first term on the right hand side of (3)) is plotted in figure 5 and,

as expected, it is proportional (approximately) to the CCF in figure 4. The simulated TF

model output, based only on the GNP input and the deterministic part of the TF model,

explains 74% of the variance of the unemployment series; while the usual coefficient of

determination based on the one-step ahead forecasting errors, using the complete

stochastic model (3), is R2=0.97.

(INSERT FIGURES 4 AND 5)

5. A Better Approach to Trend Estimation and Cycle Extraction

In the view of the present authors, it is possible to completely remove even the

possibility of encountering spurious cycle/co-movement problems by modelling the

trend and cyclical components  (and any other components that may be present)

simultaneously using an Unobserved Component (UC) model.  Powerful UC modelling

methodologies are now available and the number of references is immense, see e.g.

Harvey (1989); Young et al. (1999) and references therein. These methods provide tools

for the identification of economic cycles in time series simultaneously with any other

components. In this way, the arbitrary definition of the cycle implicit in the HP filter

may be tested against the data, and the problem of ‘artificial peaks’ induced by the

filtering operation appearing in the spectra of the cyclical component is removed

completely. Moreover, co-movements among the rest of components, such as the trends

and seasonal components, may be tested as well. There are numerous examples of such

analysis. For instance, Harvey and Koopman (1997) and Koopman et al. (1995),

present examples of UC models used to analyse USA macroeconomic and other data;

while Young et al. (1999) provide sophisticated tools for the identification and

estimation of business cycles within a UC setting. An alternative and much more

comprehensive treatment of USA macroeconomic data can be seen in Young and

Pedregal (1997, 1999), where transfer functions models are introduced to show the



relationships between medium term economic cycles in quarterly private capital

investment, government spending and unemployment series.

6. Summary

In conclusion, the purpose of this short paper is to draw attention to certain rather

misleading aspects of the literature that has appeared both in favour of and in opposition

to the use of the Hodrick-Prescott filter. Like the authors who criticise the application of

this filter, we would warn against its uncritical usage, as well as any related, overly-

simple smoothing algorithms. But, unlike such authors, we feel that such data-filters

(more correctly smoothing filters) can prove very useful if they are applied carefully and

with adequate understanding of their inherent limitations, particularly in the early,

exploratory stages of time series analysis. At the subsequent identification and

estimation stages in the analysis, however, it is important to consider the low frequency

trend as just one component in a complete UC model of the time series. As such, it

should be estimated concurrently with any other identified components (cyclical,

seasonal, etc.) using the more sophisticated fixed interval smoothing relatives of the

simple smoothing filters that constitute an important element in the state space

estimation of UC models. We believe that this is the currently most powerful approach

to the extraction of trends and cycles from time series and will effectively remove the

possibility of extracting ‘spurious’ cycles and detecting unreal co-movements among

time series.
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Figure 1: Simulation results: the detrended series and the associated scatter plots.
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Figure 2: Simulation results: the periodogram and CCF plots for the detrended series.
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Figure 3: Simulation results: the CCF plots following pre-whitening.

Standardised detrended USA Unemployment rate and GNP. 1948(2)-1998(2)

Figure 4: Detrended USA unemployment and GNP in a standardised scale between the

second quarter of 1948 and 1998 (top plot) and the CCF between both series without

pre-whitening (bottom left plot) and with pre-whitening (bottom right).
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Figure 5: Impulse Response of deterministic part of model (3)


